We consider higher order mixed finite element methods for the incompressible Stokes or Navier-Stokes equations with -elements for the velocity and discontinuous -elements for the pressure where the order can vary from element to element between and a fixed bound . We prove the inf-sup condition uniformly with respect to the meshwidth on general quadrilateral and hexahedral meshes with hanging nodes.
@article{M2AN_2007__41_1_1_0, author = {Heuveline, Vincent and Schieweck, Friedhelm}, title = {On the inf-sup condition for higher order mixed FEM on meshes with hanging nodes}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {41}, year = {2007}, pages = {1-20}, doi = {10.1051/m2an:2007005}, mrnumber = {2323688}, zbl = {1129.65086}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2007__41_1_1_0} }
Heuveline, Vincent; Schieweck, Friedhelm. On the inf-sup condition for higher order mixed FEM on meshes with hanging nodes. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 41 (2007) pp. 1-20. doi : 10.1051/m2an:2007005. http://gdmltest.u-ga.fr/item/M2AN_2007__41_1_1_0/
[1] A uniformly stable family of mixed -finite elements with continuous pressures for incompressible flow. IMA J. Numer. Anal. 22 (2002) 307-327. | Zbl 1017.76041
and ,[2] The and versions of the finite element method, basic principles and properties. SIAM Rev. 36 (1994) 578-632. | Zbl 0813.65118
and ,[3] Approximations spectrales de problèmes aux limites elliptiques. (Spectral approximation for elliptic boundary value problems). Mathématiques & Applications, Paris, Springer-Verlag 10 (1992). | MR 1208043 | Zbl 0773.47032
and .[4] Uniform inf-sup conditions for the spectral discretization of the Stokes problem. Math. Models Methods Appl. Sci. 9 (1999) 395-414. | Zbl 0944.76058
and ,[5] On the quadrilateral Q-P element for the Stokes problem. Int. J. Numer. Methods Fluids 39 (2002) 1001-1011. | Zbl 1101.76352
and ,[6] Stability of finite elements under divergence constraints. SIAM J. Numer. Anal. 20 (1983) 722-731. | Zbl 0521.76027
and ,[7] Adaptive boundary conditions for exterior flow problems. J. Math. Fluid Mech. 7 (2005) 85-107. | Zbl 1072.76049
, and ,[8] Stability of higher-order Hood-Taylor methods. SIAM J. Numer. Anal. 28 (1991) 581-590. | Zbl 0731.76042
and ,[9] Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics, Springer-Verlag 15 (1991). | MR 1115205 | Zbl 0788.73002
and ,[10] On the construction of stable curvilinear version elements for mixed formulations of elasticity and Stokes flow. Numer. Math. 86 (2000) 29-48. | Zbl 0991.76040
and ,[11] The finite element method for elliptic problems. Studies in Mathematics and its Applications 4, Amsterdam - New York - Oxford: North-Holland Publishing Company (1978). | MR 520174 | Zbl 0383.65058
,[12] An analysis of the convergence of mixed finite element methods. RAIRO Anal. Numer. 11 (1977) 341-354. | Numdam | Zbl 0373.65055
,[13] Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin-Heidelberg-New York (1986). | Zbl 0585.65077
and ,[14] Adjoint-based adaptive time-stepping for partial differential equations using proper orthogonal decomposition. Technical report, University Heidelberg, SFB 359 (2004).
and ,[15] A posteriori error control for finite element approximations of elliptic eigenvalue problems. Adv. Comput. Math. 15 (2001) 107-138. | Zbl 0995.65111
and ,[16] Duality-based adaptivity in the -finite element method. J. Numer. Math. 11 (2003) 95-113. | Zbl 1050.65111
and ,[17] An interpolation operator for functions on general quadrilateral and hexahedral meshes with hanging nodes. Technical report, University Heidelberg, SFB 359 (2004).
and ,[18] Mapped finite elements on hexahedra. Necessary and sufficient conditions for optimal interpolation errors. Numer. Algorithms 27 (2001) 317-327. | Zbl 0998.65117
,[19] The inf-sup condition for the mapped - element in arbitrary space dimensions. Computing 69 (2002) 119-139. | Zbl 1016.65073
and ,[20] Mixed -fem on anisotropic meshes. II: Hanging nodes and tensor products of boundary layer meshes. Numer. Math. 83 (1999) 667-697. | Zbl 0958.76049
, and ,[21] and finite element methods. Theory and applications in solid and fluid mechanics. Numerical Mathematics and Scientific Computation, Oxford: Clarendon Press (1998). | MR 1695813 | Zbl 0910.73003
,[22] Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483-493. | Zbl 0696.65007
and ,[23] Error analysis of some finite element methods for the Stokes problem. Math. Comp. 54 (1990) 495-508. | Zbl 0702.65095
,[24] Mixed finite element methods for problems in elasticity and Stokes flow. Numer. Math. 72 (1996) 367-389. | Zbl 0855.73075
and ,[25] Navier-Stokes equations in irregular domains. Mathematics and its Applications 326, Dordrecht: Kluwer Academic Publishers (1995). | MR 1346108 | Zbl 0837.35003
,