This paper addresses the derivation of new second-kind Fredholm combined field integral equations for the Krylov iterative solution of tridimensional acoustic scattering problems by a smooth closed surface. These integral equations need the introduction of suitable tangential square-root operators to regularize the formulations. Existence and uniqueness occur for these formulations. They can be interpreted as generalizations of the well-known Brakhage-Werner [A. Brakhage and P. Werner, Arch. Math. 16 (1965) 325-329] and Combined Field Integral Equations (CFIE) [R.F. Harrington and J.R. Mautz, Arch. Elektron. Übertragungstech (AEÜ) 32 (1978) 157-164]. Finally, some numerical experiments are performed to test their efficiency.
@article{M2AN_2007__41_1_147_0, author = {Antoine, Xavier and Darbas, Marion}, title = {Generalized combined field integral equations for the iterative solution of the three-dimensional Helmholtz equation}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {41}, year = {2007}, pages = {147-167}, doi = {10.1051/m2an:2007009}, mrnumber = {2323695}, zbl = {1123.65117}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2007__41_1_147_0} }
Antoine, Xavier; Darbas, Marion. Generalized combined field integral equations for the iterative solution of the three-dimensional Helmholtz equation. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 41 (2007) pp. 147-167. doi : 10.1051/m2an:2007009. http://gdmltest.u-ga.fr/item/M2AN_2007__41_1_147_0/
[1] A new well-conditionned integral formulation for Maxwell Equations in three dimensions. IEEE Trans. Ant. Prop. 53 (2005) 2995-3004.
, and ,[2] Solution of Helmholtz equation in exterior domain by elementary boundary integral equations. J. Comput. Phys. 118 (1995) 208-221. | Zbl 0826.65096
and ,[3] Preconditioned Krylov subspace methods for boundary element solution of the Helmholtz equation. Internat. J. Numer. Methods Engrg. 41 (1998) 875-898. | Zbl 0907.65118
and ,[4] Fast approximate computation of a time-harmonic scattered field using the On-Surface Radiation Condition method. IMA J. Appl. Math. 66 (2001) 83-110. | Zbl 1001.78008
,[5] Some Applications of the On-Surface Radiation Condition to the Integral Equations for Solving Electromagnetic Scattering Problems. Industrial Mathematics and Statistics, Narosa Publishing (2003).
,[6] Alternative integral equations for the iterative solution of acoustic scattering problems. Quaterly J. Mech. Appl. Math. 58 (2005) 107-128. | Zbl 1064.76095
and ,[7] Bayliss-Turkel-like radiation condition on surfaces of arbitrary shape. J. Math. Anal. Appl. 229 (1999) 184-211. | Zbl 0923.35179
, and ,[8] Analytic preconditioners for the electric field integral equation. Internat. J. Numer. Methods Engrg. 61 (2004) 1310-1331. | Zbl pre02216609
, and ,[9] An improved surface radiation condition for high-frequency acoustics scattering problems. Comput. Meth. Appl. Mech. Eng. 195 (2006) 4060-4074. | Zbl 1120.76058
, and ,[10] Electromagnetic and acoustic scattering by simple shapes. North-Holland Publishing Compagny, Amsterdam (1969). | MR 1111017 | Zbl 0181.56502
, and ,[11] Über das Dirichletsche Aussenraumproblem für die Helmholtzsche Schwingungsgleichung. Arch. Math. 16 (1965) 325-329. | Zbl 0132.33601
and ,[12] A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications. J. Comput. Phys. 169 (2001) 80-110. | Zbl 1052.76052
and ,[13] Surface scattering in three dimensions: an accelerated high-order solver. P. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457 (2001) 2921-2934. | Zbl 1067.76073
and ,[14] A coercive combined field integral equation for electromagnetic scattering. SIAM J. Numer. Anal. 42 (2004) 621-640. | Zbl 1082.78003
and ,[15] Regularized combined field integral equations. Numer. Math. 100 (2005) 1-19. | Zbl 1067.65137
and ,[16] A higher-order on-surface radiation condition derived from an analytic representation of a Dirichlet-to-Neumann map. IEEE. Trans. Antennas Progat. 51 (2003) 1607-1614.
, and ,[17] Convergence estimates for solution of integral equations with GMRES. J. Integral Equations Appl. 8 (1996) 19-34. | Zbl 0859.65137
, , , and ,[18] Experiments with sparse approximate preconditioning of dense linear problems from electromagnetic applications. Technical Report TR/PA/00/04, Cerfacs, France (2000).
, and ,[19] Sparse pattern selection strategies for robust Froebenius norm minimization preconditioners in electromagnetism, Preconditioning Techniques for Large Sparse Matrix Problems in Industrial Applications (Minneapolis, MN, 1999). Numer. Lin. Alg. Appl. 7 (2000) 667-685. | Zbl 1051.65050
, and ,[20] Boundary Element Methods. Academic Press, Harcourt Brace Jovanovitch, Publishers (1992). | MR 1170348 | Zbl 0842.65071
and ,[21] On a class of preconditioning methods for dense linear systems from boundary elements. SIAM J. Sci. Comput. 20 (1998) 684-698. | Zbl 0924.65037
,[22] Discrete wavelet transforms accelerated sparse preconditioners for dense boundary element systems. Electron. Trans. Numer. Anal. 8 (1999) 138-153. | Zbl 0974.65043
,[23] An analysis of sparse approximate inverse preconditioners for boundary elements. SIAM J. Matrix Anal. Appl. 22 (2001) 1958-1978. | Zbl 0985.65038
,[24] Efficient preconditioners for iterative solution of the boundary element equations for the three-dimensional Helmholtz equation. Appl. Numer. Math. 36 (2001) 475-489. | Zbl 0979.65107
and ,[25] | Zbl 0985.78011
and Warnick, On the spectrum of the electric field integral equation and the convergence of the moment method. Internat. J. Numer. Methods Engrg. 51 (2001) 31-56.[26] Fast and Efficient Algorithms in Computational Electromagnetics. Artech House Antennas and Propagation Library, Norwood (2001).
, , and ,[27] Des préconditionneurs pour la résolution numérique des équations intégrales de frontière de l'acoustique. C.R. Acad. Sci. Paris, Sér. I 330 (2000) 617-622. | Zbl 0952.65096
and ,[28] A preconditioner for the electric field integral equation based on Calderon formulas. SIAM J. Numer. Anal. 40 (2002) 1100-1135. | Zbl 1021.78010
and ,[29] Integral Equations in Scattering Theory. Pure and Applied Mathematics, John Wiley and Sons, New York (1983). | MR 700400 | Zbl 0522.35001
and ,[30] Inverse Acoustic and Electromagnetic Scattering Theory. Second Edition, Applied Mathematical Sciences 93, Springer-Verlag, Berlin (1998). | MR 1635980 | Zbl 0893.35138
and ,[31] Préconditionneurs Analytiques de type Calderòn pour les Formulations Intégrales des Problèmes de Diffraction d'ondes. Ph.D. Thesis, Université P. Sabatier, Toulouse, France (November 2004).
,[32] Generalized CFIE for the iterative solution of 3-D Maxwell Equations. Appl. Math. Lett. 19 (2006) 834-839. | Zbl 1135.78012
,[33] An improved discrete wavelet transform preconditioner for dense matrix problems. SIAM J. Matrix Anal. Appl. 25 (2003) 642-661. | Zbl 1061.65037
,[34] H-field, E-field and combined field solution for conducting bodies of revolution. Arch. Elektron. Übertragungstech (AEÜ) 32 (1978) 157-164.
and ,[35] Improving the beam propagation method for TM polarization. Opt. Quant. Electron. 35 (2003) 507-519.
and ,[36] Surface radiation conditions. IMA J. Appl. Math. 41 (1988) 21-30. | Zbl 0692.35074
,[37] An approximate boundary condition in acoustics. J. Sound Vibr. 121 (1988) 37-45. | Zbl 0745.41008
,[38] An improved surface radiation condition. IMA J. Appl. Math. 48 (1992) 163-193. | Zbl 0758.35074
,[39] GMRES and integral operators. SIAM J. Sci. Comput. 17 (1996) 217-226. | Zbl 0843.65022
and ,[40] Minimizing the condition number of boundary integral operators in acoustic and electromagnetic scattering. Quaterly J. Mech. Appl. Math. 38 (1985) 323-341. | Zbl 0559.73095
,[41] A new formulation of electromagnetic wave scattering using the on-surface radiation condition method. IEEE Trans. Antennas Propag. 35 (1987) 153-161. | Zbl 0947.78571
, and ,[42] Analysis of a boundary integral equation for high frequency Helmholtz equation, 4th International Conference on Mathematical and Numerical Aspects of Wave Propagation, Golden, Colorado, 1-5 June (1998) 765-767. | Zbl 0940.65138
and ,[43] New integral equation formulations for wave scattering problems. ESAIM: M2AN 38 (2004) 157-176. | Numdam | Zbl 1130.35326
and ,[44] Beam propagation method using a Padé approximant of the propagator. Opt. Lett. 27 (2002) 683-685.
and ,[45] Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge, UK (2000). | MR 1742312 | Zbl 0948.35001
,[46] Rational square-root approximations for parabolic equation algorithms. J. Acoust. Soc. Am. 101 (1997) 760-766
, , ,[47] A note on the superlinear convergence of GMRES. SIAM J. Numer. Anal. 34 (1997) 513-516. | Zbl 0873.65054
,[48] Rapid solution of integral equations of scattering theory in two dimensions. J. Comput. Phys. 86 (1990) 414-439. | Zbl 0686.65079
,[49] Iterative Methods for Sparse Linear Systems. PWS Pub. Co., Boston (1996). | Zbl 1031.65047
,[50] GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7 (1986) 856-869. | Zbl 0599.65018
and ,[51] The construction of some efficient preconditioners in the boundary element method. Adv. Comput. Math. 9 (1998) 191-216. | Zbl 0922.65076
and ,[52] A guide to electric-field propagation techniques for guided-wave optics. Opt. Quant. Electron. 26 (1994) 185-197.
,