In this work, we consider singular perturbations of the boundary of a smooth domain. We describe the asymptotic behavior of the solution of a second order elliptic equation posed in the perturbed domain with respect to the size parameter of the deformation. We are also interested in the variations of the energy functional. We propose a numerical method for the approximation of based on a multiscale superposition of the unperturbed solution and a profile defined in a model domain. We conclude with numerical results.
@article{M2AN_2007__41_1_111_0, author = {Dambrine, Marc and Vial, Gr\'egory}, title = {A multiscale correction method for local singular perturbations of the boundary}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {41}, year = {2007}, pages = {111-127}, doi = {10.1051/m2an:2007012}, mrnumber = {2323693}, zbl = {1129.65084}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2007__41_1_111_0} }
Dambrine, Marc; Vial, Grégory. A multiscale correction method for local singular perturbations of the boundary. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 41 (2007) pp. 111-127. doi : 10.1051/m2an:2007012. http://gdmltest.u-ga.fr/item/M2AN_2007__41_1_111_0/
[1] Shape optimization by the homogenization method, Applied Mathematical Sciences 146. Springer-Verlag, New York (2002). | MR 1859696 | Zbl 0990.35001
,[2] Modélisation ‘macro' de phénomènes localisés à l'échelle ‘micro' : formulation et implantation numérique. Revue européenne des éléments finis, numéro spécial Giens 2003 13 (2004) 461-473. | Zbl pre05147337
and ,[3] Ultimate load computation, effect of surfacic defect and adaptative techniques, in 7th World Congress in Computational Mechanics, Los Angeles (2006).
, , and ,[4] Asymptotic expansion of the solution of an interface problem in a polygonal domain with thin layer. Asymptotic Anal. 50 (2006) 121-173. | Zbl 1136.35021
, , and ,[5] On the influence of a boundary perforation on the dirichlet energy. Control Cybern. 34 (2005) 117-136.
and ,[6] Absorbing boundary conditions for the numerical simulation of waves. Math. Comp. 31 (1977) 629-651. | Zbl 0367.65051
and ,[7] Nonreflecting boundary conditions. J. Comput. Phys. 94 (1991) 1-29. | Zbl 0731.65109
,[8] Matching of Asymptotic Expansions of Solutions of Boundary Value Problems. Translations of Mathematical Monographs 102, Amer. Math. Soc., Providence, R.I. (1992). | Zbl 0754.34002
,[9] Boundary value problems for elliptic equations in domains with conical or angular points. Trans. Moscow Math. Soc. 16 (1967) 227-313. | Zbl 0194.13405
,[10] Computation of singular solutions in elliptic problems and elasticity. Masson, Paris (1987). | MR 995254 | Zbl 0647.73010
and ,[11] The localized finite element method and its application to the two-dimensional sea-keeping problem. SIAM J. Numer. Anal. 25 (1988) 729-752. | Zbl 0656.76008
and ,[12] Topological derivative for nucleation of non-circular voids. The Neumann problem, in Differential geometric methods in the control of partial differential equations (Boulder, CO, 1999), Contemp. Math. 268, Amer. Math. Soc., Providence, RI (2000) 341-361. | Zbl 1050.49028
and ,[13] The Topological Asymptotic, in Computational Methods for Control Applications, International Séries GAKUTO (2002). | Zbl 1082.93584
,[14] Asymptotic behavior of energy integrals under small perturbations of the boundary near corner and conic points. Trudy Moskov. Mat. Obshch. 50 (1987) 79-129, 261. | Zbl 0668.35027
and ,[15] Asymptotic theory of elliptic boundary value problems in singularly perturbed domains. Birkhäuser, Berlin (2000).
, and ,[16] Perturbation of the eigenvalues of the Neumann problem due to the variation of the domain boundary. Algebra i Analiz 5 (1993) 169-188. | Zbl 0827.35086
and ,[17] Asymptotic analysis of shape functionals. J. Math. Pures Appl. 82 (2003) 125-196. | Zbl 1031.35020
and ,[18] Matching of asymptotic expansions and multiscale expansion for the rounded corner problem. SAM Research Report, ETH, Zürich (2006).
and ,