In this paper, we study a Zakharov system coupled to an electron diffusion equation in order to describe laser-plasma interactions. Starting from the Vlasov-Maxwell system, we derive a nonlinear Schrödinger like system which takes into account the energy exchanged between the plasma waves and the electrons via Landau damping. Two existence theorems are established in a subsonic regime. Using a time-splitting, spectral discretizations for the Zakharov system and a finite difference scheme for the electron diffusion equation, we perform numerical simulations and show how Landau damping works quantitatively.
@article{M2AN_2006__40_6_961_0,
author = {Belaouar, R. and Colin, T. and Gallice, G. and Galusinski, C.},
title = {Theoretical and numerical study of a quasi-linear Zakharov system describing Landau damping},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
volume = {40},
year = {2006},
pages = {961-990},
doi = {10.1051/m2an:2007004},
mrnumber = {2297101},
zbl = {1112.76090},
language = {en},
url = {http://dml.mathdoc.fr/item/M2AN_2006__40_6_961_0}
}
Belaouar, R.; Colin, T.; Gallice, G.; Galusinski, C. Theoretical and numerical study of a quasi-linear Zakharov system describing Landau damping. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 40 (2006) pp. 961-990. doi : 10.1051/m2an:2007004. http://gdmltest.u-ga.fr/item/M2AN_2006__40_6_961_0/
[1] and, Equation of Langmuir turbulence and nonlinear Schrödinger equation: smoothness and approximation. J. Funct. Anal. 79 (1988) 183-210. | Zbl 0655.76044
[2] , On a nonlocal Zakharov equation. Nonlinear Anal. 25 (1995) 247-278. | Zbl 0830.35123
[3] and, On a quasilinear Zakharov System describing laser-plasma interactions. Diff. Int. Eqs. 17 (2004) 297-330. | Zbl pre05138408
[4] and, Instabilities in Zakharov Equations for Laser Propagation in a Plasma, Phase Space Analysis of PDEs, A. Bove, F. Colombini, and D. Del Santo, Eds., Progress in Nonlinear Differential Equations and Their Applications, Birkhauser (2006). | MR 2263207 | Zbl 1133.35303
[5] and, Physique des plasmas 1, 2. Inter Editions-Editions du CNRS (1994).
[6] , and, On the Cauchy problem for the Zakharov system. J. Funct. Anal. 151 (1997) 384-436. | Zbl 0894.35108
[7] and, Existence of self-similar blow-up solutions for Zakharov equation in dimension two. I. Comm. Math. Phys. 160 (1994) 173-215. | Zbl 0808.35137
[8] and, Concentration properties of blow up solutions and instability results for Zakharov equation in dimension two. II. Comm. Math. Phys. 160 (1994) 349-389. | Zbl 0808.35138
[9] , Convergence of an energy-preserving scheme for the Zakharov equations in one space dimension. Math. Comp. 58 (1992) 83-102. | Zbl 0746.65066
[10] , and, Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations. Invent. Math. 134 (1998) 489-545. | Zbl 0928.35158
[11] , and, On a degenerate Zakharov system. Bull. Braz. Math. Soc. New Series 36 (2005) 1-23. | Zbl 1070.35087
[12] and, Existence and smoothing effect of solution for the Zakharov equations. Publ. Res. Inst. Math. Sci. 28 (1992) 329-361. | Zbl 0842.35116
[13] , and, Numerical Solution of the Zakharov Equations. J. Compt. Phys. 50 (1983) 482-498. | Zbl 0518.76122
[14] . Étude théorique et numérique de l'influence du lissage optique sur la filamentation des faisceaux lasers dans les plasmas sous-critiques de fusion inertielle. Ph.D. thesis, University of Paris XI.
[15] , and. Nonlinear saturation of simulated Raman scattering in laser hot spots. Phys. Plasmas 6 (1999) 1294-1317.
[16] , Competition between Langmuir wave-wave and wave-particule interactions. Ph.D. thesis, University of Colorado, Department of Astrophysical (1997).
[17] and, The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence. Comm. Math. Phys. 106 (1986) 569-580. | Zbl 0639.76054
[18] and, Quelques résultats de régularité pour les équations de la turbulence de Langmuir. C. R. Acad. Sci. Paris Sér. A-B 289 (1979) 173-176. | Zbl 0431.35077
[19] and, The nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse. Appl. Math. Sci. 139, Springer (1999). | MR 1696311 | Zbl 0928.35157
[20] , Derivation of the Zakharov equations. Arch. Rat. Mech. Anal. (to appear). | MR 2289864 | Zbl pre05146096
[21] , and, Hamiltonian approach to the description of nonlinear plasma phenomena. Phys. Reports 129 (1985) 285-366.