We consider the Stokes problem provided with non standard boundary conditions which involve the normal component of the velocity and the tangential components of the vorticity. We write a variational formulation of this problem with three independent unknowns: the vorticity, the velocity and the pressure. Next we propose a discretization by spectral element methods which relies on this formulation. A detailed numerical analysis leads to optimal error estimates for the three unknowns and numerical experiments confirm the interest of the discretization.
@article{M2AN_2006__40_5_897_0, author = {Amoura, Karima and Bernardi, Christine and Chorfi, Nejmeddine}, title = {Spectral element discretization of the vorticity, velocity and pressure formulation of the Stokes problem}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {40}, year = {2006}, pages = {897-921}, doi = {10.1051/m2an:2006038}, mrnumber = {2293251}, zbl = {1109.76044}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2006__40_5_897_0} }
Amoura, Karima; Bernardi, Christine; Chorfi, Nejmeddine. Spectral element discretization of the vorticity, velocity and pressure formulation of the Stokes problem. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 40 (2006) pp. 897-921. doi : 10.1051/m2an:2006038. http://gdmltest.u-ga.fr/item/M2AN_2006__40_5_897_0/
[1] Vorticity-velocity-pressure formulation for Navier-Stokes equations. Comput. Vis. Sci. 6 (2004) 47-52. | Zbl pre02132407
, , and ,[2] Vector potentials in three-dimensional nonsmooth domains. Math. Method. Appl. Sci. 21 (1998) 823-864. | Zbl 0914.35094
, , and ,[3] Spectral element discretization of the Maxwell equations. Math. Comput. 68 (1999) 1497-1520. | Zbl 0932.65110
and ,[4] Spectral discretization of the vorticity, velocity and pressure formulation of the Stokes problem. SIAM J. Numer. Anal. 44 (2006) 826-850. bibitemBMx C. Bernardi and Y. Maday, Spectral Methods, in the Handbook of Numerical Analysis V, P.G. Ciarlet and J.-L. Lions Eds., North-Holland (1997) 209-485. | Zbl 1117.65159
and ,[5] Polynomials in the Sobolev world. Internal Report, Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie (2003).
, and ,[6] Incompressible Viscous Fluids and their Finite Element Discretizations, in preparation.
, and ,[7] Stability of finite elements under divergence constraints. SIAM J. Numer. Anal. 20 (1983) 722-731. | Zbl 0521.76027
and ,[8] On traces for functional spaces related to Maxwell's equations. Part II: Hodge decompositions on the boundary of Lipschitz polyhedra and applications. Math. Method. Appl. Sci. 24 (2001) 31-48. | Zbl 0976.46023
and ,[9] Algebraic convergence for anisotropic edge elements in polyhedral domains. Numer. Math. 101 (2005) 29-65. | Zbl 1116.78020
, and ,[10] Espaces fonctionnels Maxwell: Les gentils, les méchants et les singularités, Web publication (1998) http://perso.univ-rennes1.fr/monique.dauge.
and ,[11] Computation of resonance frequencies for Maxwell equations in non smooth domains, in Topics in Computational Wave Propagation, M. Ainsworth, P. Davies, D. Duncan, P. Martin and B. Rynne Eds., Springer (2004) 125-161. | Zbl 1116.78002
and ,[12] Vorticity-velocity-pressure formulation for the Stokes problem. Math. Meth. Appl. Sci. 25 (2002) 1091-1119. | Zbl 1099.76049
,[13] Vorticity-velocity-pressure and stream function-vorticity formulations for the Stokes problem. J. Math. Pure. Appl. 82 (2003) 1395-1451. | Zbl 1070.76014
, and ,[14] Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag (1986). | MR 851383 | Zbl 0585.65077
and ,[15] Mixed finite elements in . Numer. Math. 35 (1980) 315-341. | Zbl 0419.65069
,[16] A mixed finite element method for second order elliptic problems, in Mathematical Aspects of Finite Element Methods, I. Galligani and E. Magenes Eds., Lect. Notes Math. 606, Springer-Verlag (1977) 292-315. | Zbl 0362.65089
and ,[17] Développement numérique de la formulation tourbillon-vitesse-pression pour le problème de Stokes. Ph.D. thesis, Université Pierre et Marie Curie, Paris (1999).
,