In this paper we develop a residual based a posteriori error analysis for an augmented mixed finite element method applied to the problem of linear elasticity in the plane. More precisely, we derive a reliable and efficient a posteriori error estimator for the case of pure Dirichlet boundary conditions. In addition, several numerical experiments confirming the theoretical properties of the estimator, and illustrating the capability of the corresponding adaptive algorithm to localize the singularities and the large stress regions of the solution, are also reported.
@article{M2AN_2006__40_5_843_0, author = {Barrios, Tom\'as P. and Gatica, Gabriel N. and Gonz\'alez, Mar\'\i a and Heuer, Norbert}, title = {A residual based a posteriori error estimator for an augmented mixed finite element method in linear elasticity}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {40}, year = {2006}, pages = {843-869}, doi = {10.1051/m2an:2006036}, mrnumber = {2293249}, zbl = {1109.74047}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2006__40_5_843_0} }
Barrios, Tomás P.; Gatica, Gabriel N.; González, María; Heuer, Norbert. A residual based a posteriori error estimator for an augmented mixed finite element method in linear elasticity. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 40 (2006) pp. 843-869. doi : 10.1051/m2an:2006036. http://gdmltest.u-ga.fr/item/M2AN_2006__40_5_843_0/
[1] PEERS: A new mixed finite element method for plane elasticity. Japan J. Appl. Math. 1 (1984) 347-367. | Zbl 0633.73074
, and ,[2] Error indicators for mixed finite elements in 2-dimensional linear elasticity. Comput. Method. Appl. M. 127 (1995) 345-356. | Zbl 0860.73064
, , , and ,[3] Mixed and Hybrid Finite Element Methods. Springer-Verlag (1991). | MR 1115205 | Zbl 0788.73002
and ,[4] A posteriori error estimate for the mixed finite element method. Math. Comput. 66 (1997) 465-476. | Zbl 0864.65068
,[5] A posteriori error estimates for mixed FEM in elasticity. Numer. Math. 81 (1998) 187-209. | Zbl 0928.74093
and ,[6] The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, New York, Oxford (1978). | MR 520174 | Zbl 0383.65058
,[7] Approximation by finite element functions using local regularisation. RAIRO Anal. Numér. 9 (1975) 77-84. | Numdam | Zbl 0368.65008
,[8] An absolutely stabilized finite element method for the Stokes problem. Math. Comput. 52 (1989) 495-508. | Zbl 0669.76051
and ,[9] A note on the efficiency of residual-based a posteriori error estimators for some mixed finite element methods. Electronic Trans. Numer. Anal. 17 (2004) 218-233. | Zbl 1065.65125
,[10] Analysis of a new augmented mixed finite element method for linear elasticity allowing approximations. ESAIM: M2AN 40 (2006) 1-28. | Numdam | Zbl pre05038390
,[11] A stabilized mixed finite element method for Darcy flow. Comput. Method. Appl. M. 191 (2002) 4341-4370. | Zbl 1015.76047
and ,[12] Mixed and Hybrid Methods, in Handbook of Numerical Analysis II, Finite Element Methods (Part 1) P.G. Ciarlet and J.L. Lions Eds., North-Holland, Amsterdam (1991). | MR 1115239 | Zbl 0875.65090
and ,[13] A posteriori error estimation and adaptive mesh-refinement techniques. J. Comput. Appl. Math. 50 (1994) 67-83. | Zbl 0811.65089
,[14] A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner (Chichester) (1996). | Zbl 0853.65108
,