Finite element analysis of a simplified stochastic hookean dumbbells model arising from viscoelastic flows
Bonito, Andrea ; Clément, Philippe ; Picasso, Marco
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 40 (2006), p. 785-814 / Harvested from Numdam

A simplified stochastic Hookean dumbbells model arising from viscoelastic flows is considered, the convective terms being disregarded. A finite element discretization in space is proposed. Existence of the numerical solution is proved for small data, so as a priori error estimates, using an implicit function theorem and regularity results obtained in [Bonito et al., J. Evol. Equ. 6 (2006) 381-398] for the solution of the continuous problem. A posteriori error estimates are also derived. Numerical results with small time steps and a large number of realizations confirm the convergence rate with respect to the mesh size.

Publié le : 2006-01-01
DOI : https://doi.org/10.1051/m2an:2006030
Classification:  46T,  65M,  76A
@article{M2AN_2006__40_4_785_0,
     author = {Bonito, Andrea and Cl\'ement, Philippe and Picasso, Marco},
     title = {Finite element analysis of a simplified stochastic hookean dumbbells model arising from viscoelastic flows},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {40},
     year = {2006},
     pages = {785-814},
     doi = {10.1051/m2an:2006030},
     mrnumber = {2274778},
     zbl = {1133.76332},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2006__40_4_785_0}
}
Bonito, Andrea; Clément, Philippe; Picasso, Marco. Finite element analysis of a simplified stochastic hookean dumbbells model arising from viscoelastic flows. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 40 (2006) pp. 785-814. doi : 10.1051/m2an:2006030. http://gdmltest.u-ga.fr/item/M2AN_2006__40_4_785_0/

[1] R. Akhavan and Q. Zhou, A comparison of FENE and FENE-P dumbbell and chain models in turbulent flow. J. Non-Newton. Fluid 109 (2003) 115-155. | Zbl 1025.76508

[2] N. Arada and A. Sequeira, Strong steady solutions for a generalized Oldroyd-B model with shear-dependent viscosity in a bounded domain. Math. Mod. Meth. Appl. S. 13 (2003) 1303-1323. | Zbl 1065.76016

[3] F.P.T. Baaijens, Mixed finite element methods for viscoelastic flow analysis: a review. J. Non-Newton. Fluid 79 (1998) 361-385. | Zbl 0957.76024

[4] I. Babuška, R. Durán and R. Rodríguez, Analysis of the efficiency of an a posteriori error estimator for linear triangular finite elements. SIAM J. Numer. Anal. 29 (1992) 947-964. | Zbl 0759.65069

[5] J. Baranger and H. El Amri, Estimateurs a posteriori d'erreur pour le calcul adaptatif d'écoulements quasi-newtoniens. RAIRO Modél. Math. Anal. Numér. 25 (1991) 931-947. | Numdam | Zbl 0712.76068

[6] J. Baranger and D. Sandri, Finite element approximation of viscoelastic fluid flow: existence of approximate solutions and error bounds. I. Discontinuous constraints. Numer. Math. 63 (1992) 13-27. | Zbl 0761.76032

[7] J. Baranger and S. Wardi, Numerical analysis of a FEM for a transient viscoelastic flow. Comput. Method. Appl. M. 125 (1995) 171-185. | Zbl 0982.76526

[8] J.W. Barrett, C. Schwab and E. Süli, Existence of global weak solutions for some polymeric flow models. Math. Mod. Meth. Appl. S. 15 (2005) 939-983. | Zbl 1161.76453 | Zbl pre02203969

[9] R. Bird, C. Curtiss, R. Armstrong and O. Hassager, Dynamics of polymeric liquids, Vol. 1 and 2. John Wiley & Sons, New York, 1987.

[10] A. Bonito, Ph. Clément and M. Picasso, Mathematical and numerical analysis of a simplified time-dependent viscoelastic flow. Numer. Math. (submitted). | MR 2328846 | Zbl pre05201237

[11] A. Bonito, Ph. Clément and M. Picasso, Mathematical analysis of a simplified Hookean dumbbells model arising from viscoelastic flows. J. Evol. Equ. 6 (2006) 381-398. | Zbl 1104.76033

[12] A. Bonito, M. Picasso and M. Laso, Numerical simulation of 3d viscoelastic flows with complex free surfaces. J. Comput. Phys. 215 (2006) 691-716. | Zbl pre05037672

[13] J. Bonvin and M. Picasso, Variance reduction methods for connffessit-like simulations. J. Non-Newton. Fluid 84 (1999) 191-215. | Zbl 0972.76054

[14] J. Bonvin and M. Picasso, A finite element/Monte-Carlo method for polymer dilute solutions. Comput. Vis. Sci. 4 (2001) 93-98. Second AMIF International Conference (Il Ciocco, 2000). | Zbl 1012.76043

[15] J. Bonvin, M. Picasso and R. Stenberg, GLS and EVSS methods for a three-field Stokes problem arising from viscoelastic flows. Comput. Method. Appl. M. 190 (2001) 3893-3914. | Zbl 1014.76043

[16] B.H.A.A. Van Den Brule, A.P.G. Van Heel and M.A. Hulsen, Simulation of viscoelastic flows using Brownian configuration fields. J. Non-Newton. Fluid 70 (1997) 79-101.

[17] B.H.A.A. Van Den Brule, A.P.G. Van Heel and M.A. Hulsen, On the selection of parameters in the FENE-P model. J. Non-Newton. Fluid 75 (1998) 253-271. | Zbl 0961.76006

[18] B.H.A.A Van Den Brule, M.A. Hulsen and H.C. Öttinger, Brownian configuration fields and variance reduced connffessit. J. Non-Newton. Fluid 70 (1997) 255-261.

[19] B. Buffoni and J. Toland, Analytic theory of global bifurcation. Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ, (2003). | MR 1956130 | Zbl 1021.47044

[20] G. Caloz and J. Rappaz, Numerical analysis for nonlinear and bifurcation problems, in Handbook of numerical analysis, Vol. V, North-Holland, Amsterdam (1997) 487-637.

[21] C. Chauvière and A. Lozinski, A fast solver for Fokker-Planck equation applied to viscoelastic flows calculations: 2D FENE model. J. Comput. Phys. 189 (2003) 607-625. | Zbl 1060.82525

[22] P.G. Ciarlet and J.-L. Lions, editors, Handbook of numerical analysis. Vol. II. North-Holland, Amsterdam, (1991). Finite element methods. Part 1. | MR 1115235 | Zbl 0875.65088

[23] P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77-84. | Numdam | Zbl 0368.65008

[24] G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions, Vol. 44 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1992). | MR 1207136 | Zbl 0761.60052

[25] W. E, T. Li and P. Zhang, Convergence of a stochastic method for the modeling of polymeric fluids. Acta Math. Sin. 18 (2002) 529-536. | Zbl 1137.76313

[26] W. E, T. Li and P. Zhang, Well-posedness for the dumbbell model of polymeric fluids. Comm. Math. Phys. 248 (2004) 409-427. | Zbl 1060.35169

[27] V.J. Ervin and N. Heuer, Approximation of time-dependent, viscoelastic fluid flow: Crank-Nicolson, finite element approximation. Numer. Methods Partial Differ. Equ. 20 (2004) 248-283. | Zbl 1037.76041

[28] V.J. Ervin and W.W. Miles, Approximation of time-dependent viscoelastic fluid flow: SUPG approximation. SIAM J. Numer. Anal. 41 (2003) 457-486 (electronic). | Zbl 1130.76362

[29] X. Fan, Molecular models and flow calculation: I. the numerical solutions to multibead-rod models in inhomogeneous flows. Acta Mech. Sin. 5 (1989) 49-59.

[30] X. Fan, Molecular models and flow calculation: II. simulation of steady planar flow. Acta Mech. Sin. 5 (1989) 216-226.

[31] M. Farhloul and A.M. Zine, A new mixed finite element method for viscoelastic fluid flows. Int. J. Pure Appl. Math. 7 (2003) 93-115. | Zbl 1134.76384

[32] E. Fernández-Cara, F. Guillén and R.R. Ortega, Mathematical modeling and analysis of viscoelastic fluids of the Oldroyd kind, in Handbook of numerical analysis, Vol. VIII, North-Holland, Amsterdam (2002) 543-661. | Zbl 1024.76003

[33] A. Fortin, R. Guénette and R. Pierre, On the discrete EVSS method. Comput. Method. Appl. M. 189 (2000) 121-139. | Zbl 0980.76044

[34] M. Fortin and R. Pierre, On the convergence of the mixed method of Crochet and Marchal for viscoelastic flows. Comput. Method. Appl. M. 73 (1989) 341-350. | Zbl 0692.76002

[35] Y. Giga, Analyticity of the semigroup generated by the Stokes operator in L r spaces. Math. Z. 178 (1981) 297-329. | Zbl 0473.35064

[36] E. Grande, M. Laso and M. Picasso, Calculation of variable-topology free surface flows using CONNFFESSIT. J. Non-Newton. Fluid 113 (2003) 127-145. | Zbl 1065.76559

[37] C. Guillopé and J.-C. Saut, Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlinear Anal-theor. 15 (1990) 849-869. | Zbl 0729.76006

[38] B. Jourdain, T. Lelièvre and C. Le Bris, Numerical analysis of micro-macro simulations of polymeric fluid flows: a simple case. Math. Mod. Meth. Appl. S. 12 (2002) 1205-1243. | Zbl 1041.76003

[39] B. Jourdain, C. Le Bris and T. Lelièvre, On a variance reduction technique for micro-macro simulations of polymeric fluids. J. Non-Newton. Fluid 122 (2004) 91-106. | Zbl 1143.76333

[40] B. Jourdain, T. Lelièvre and C. Le Bris, Existence of solution for a micro-macro model of polymeric fluid: the FENE model. J. Funct. Anal. 209 (2004) 162-193. | Zbl 1047.76004

[41] B. Jourdain, C. Le Bris, T. Lelièvre and F. Otto, Long-time asymptotics of a multiscale model for polymeric fluid flows. Arch. Ration. Mech. An. 181 (2006) 97-148. | Zbl 1089.76006

[42] I. Karatzas and S.E. Shreve, Brownian motion and stochastic calculus, volume 113 of Graduate Texts in Mathematics. Springer-Verlag, New York (1991). | MR 1121940 | Zbl 0734.60060

[43] R. Keunings, On the Peterlin approximation for finitely extensible dumbbells. J. Non-Newton. Fluid 68 (1997) 85-100.

[44] R. Keunings, Micro-marco methods for the multi-scale simulation of viscoelastic flow using molecular models of kinetic theory, in Rheology Reviews, D.M. Binding, K. Walters (Eds.), British Society of Rheology (2004) 67-98.

[45] S. Larsson, V. Thomée and L.B. Wahlbin, Numerical solution of parabolic integro-differential equations by the discontinuous Galerkin method. Math. Comp. 67 (1998) 45-71. | Zbl 0896.65090

[46] M. Laso and H.C. Öttinger, Calculation of viscoelastic flow using molecular models: the connffessit approach. J. Non-Newton. Fluid 47 (1993) 1-20. | Zbl 0774.76012

[47] M. Laso, H.C. Öttinger and M. Picasso, 2-d time-dependent viscoelastic flow calculations using connffessit. AICHE Journal 43 (1997) 877-892.

[48] C. Le Bris and P.-L. Lions, Renormalized solutions of some transport equations with partially W 1,1 velocities and applications. Ann. Mat. Pur. Appl. 183 (2004) 97-130. | Zbl pre05058532

[49] T. Lelièvre, Optimal error estimate for the CONNFFESSIT approach in a simple case. Comput. Fluids 33 (2004) 815-820. | Zbl 1100.76540

[50] T. Li and P. Zhang, Convergence analysis of BCF method for Hookean dumbbell model with finite difference scheme. Multiscale Model. Simul. 5 (2006) 205-234. | Zbl pre05037916

[51] T. Li, H. Zhang and P. Zhang, Local existence for the dumbbell model of polymeric fluids. Comm. Partial Diff. Eq. 29 (2004) 903-923. | Zbl 1058.76010

[52] P.L. Lions and N. Masmoudi, Global solutions for some Oldroyd models of non-Newtonian flows. Chinese Ann. Math. Ser. B 21 (2000) 131-146. | Zbl 0957.35109

[53] A. Lozinski and R.G. Owens, An energy estimate for the Oldroyd B model: theory and applications. J. Non-Newton. Fluid 112 (2003) 161-176. | Zbl 1065.76018

[54] A. Lunardi, Analytic semigroups and optimal regularity in parabolic problems. Progress in Nonlinear Differential Equations and their Applications, 16 Birkhäuser Verlag, Basel (1995). | MR 1329547 | Zbl 0816.35001

[55] A. Machmoum and D. Esselaoui, Finite element approximation of viscoelastic fluid flow using characteristics method. Comput. Method. Appl. M. 190 (2001) 5603-5618. | Zbl 1012.76047

[56] K. Najib and D. Sandri, On a decoupled algorithm for solving a finite element problem for the approximation of viscoelastic fluid flow. Numer. Math. 72 (1995) 223-238. | Zbl 0838.76044

[57] H.C. Öttinger, Stochastic processes in polymeric fluids. Springer-Verlag, Berlin (1996). | MR 1383323 | Zbl 0995.60098

[58] R.G. Owens and T.N. Phillips, Computational rheology. Imperial College Press, London (2002). | MR 1906885 | Zbl 1015.76002

[59] M. Picasso and J. Rappaz, Existence, a priori and a posteriori error estimates for a nonlinear three-field problem arising from Oldroyd-B viscoelastic flows. ESAIM: M2AN 35 (2001) 879-897. | Numdam | Zbl 0997.76051

[60] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Number 23 in Springer Series in Computational Mathematics. Springer-Verlag (1991). | MR 1299729 | Zbl 0803.65088

[61] M. Renardy, Existence of slow steady flows of viscoelastic fluids of integral type. Z. Angew. Math. Mech. 68 (1988) T40-T44. | Zbl 0669.76022

[62] M. Renardy, An existence theorem for model equations resulting from kinetic theories of polymer solutions. SIAM J. Math. Anal. 22 (1991) 313-327. | Zbl 0735.35101

[63] D. Revuz and M. Yor, Continuous martingales and Brownian motion, of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. 293 Springer-Verlag, Berlin (1994). | MR 1303781 | Zbl 0804.60001

[64] D. Sandri, Analyse d'une formulation à trois champs du problème de Stokes. RAIRO Modél. Math. Anal. Numér. 27 (1993) 817-841. | Numdam | Zbl 0791.76008

[65] D. Sandri, Finite element approximation of viscoelastic fluid flow: existence of approximate solutions and error bounds. Continuous approximation of the stress. SIAM J. Numer. Anal. 31 (1994) 362-377. | Zbl 0807.76040

[66] P.E. Sobolevskiĭ, Coerciveness inequalities for abstract parabolic equations. Dokl. Akad. Nauk SSSR 157 (1964) 52-55. | Zbl 0149.36001

[67] R. Verfürth, A posteriori error estimators for the Stokes equations. Numer. Math. 55 (1989) 309-325. | Zbl 0674.65092

[68] T. Von Petersdorff and Ch. Schwab, Numerical solution of parabolic equations in high dimensions. ESAIM: M2AN 38 (2004) 93-127. | Numdam | Zbl 1083.65095

[69] H. Zhang and P. Zhang, Local existence for the FENE-Dumbbells model of polymeric liquids. Arch. Ration. Mech. An. 181 (2006) 373-400. | Zbl 1095.76004