This work deals with the study of some stratigraphic models for the formation of geological basins under a maximal erosion rate constrain. It leads to introduce differential inclusions of degenerated hyperbolic-parabolic type , where is the maximal monotonous graph of the Heaviside function and is a given non-negative function. Firstly, we present the new and realistic models and an original mathematical formulation, taking into account the weather-limited rate constraint in the conservation law, with a unilateral constraint on the outflow boundary. Then, we give a study of the case with numerical illustrations.
@article{M2AN_2006__40_4_765_0, author = {Antontsev, Stanislav N. and Gagneux, G\'erard and Luce, Robert and Vallet, Guy}, title = {New unilateral problems in stratigraphy}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {40}, year = {2006}, pages = {765-784}, doi = {10.1051/m2an:2006029}, mrnumber = {2274777}, zbl = {1133.35388}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2006__40_4_765_0} }
Antontsev, Stanislav N.; Gagneux, Gérard; Luce, Robert; Vallet, Guy. New unilateral problems in stratigraphy. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 40 (2006) pp. 765-784. doi : 10.1051/m2an:2006029. http://gdmltest.u-ga.fr/item/M2AN_2006__40_4_765_0/
[1] New unilateral problems in stratigraphy. Publication interne du Laboratoire de Mathématiques Appliquées, UMR-CNRS 5142, Université de Pau, No. 05/13 (2005).
, , and ,[2] Weather limited constraint in stratigraphy. International conference “Tikhonov and Contemporary Mathematics”: section 5, Mathematical Geophysics, Moscow (2006) 7-8.
, , and ,[3] Analyse mathématique d'un modèle d'asservissement stratigraphique. Approche gravitationnelle d'un processus de sédimentation sous contrainte d'érosion maximale. Publication interne du Laboratoire de Mathématiques Appliquées, UMR-CNRS 5142, Université de Pau, No. 01/23 (2001).
, and ,[4] On some stratigraphic control problems, Prikladnaya Mekhanika Tekhnicheskaja Fisika (Novosibirsk) 44 (2003) 85-94 (in Russian), and Journal of Applied Mechanics and Technical Physics (New York) 44 (2003) 821-828. | Zbl 1038.76039
, and ,[5] Bonnes solutions d'un problème d'évolution semi-linéaire. C. R. Acad. Sci. Paris Sér. I Math. (306) (1988) 527-530. | Zbl 0635.34013
, and ,[6] Infiltration in porous media with dynamic capillary pressure: Travelling waves. Eur. J. Appl. Math. 11 (2000) 381-397. | Zbl 0970.76096
, and ,[7] Contribution à l'analyse mathématique de modèles stratigraphiques. Thèse de l'Université de Pau, France (2004).
,[8] Analytical and numerical study of a model of erosion and sedimentation. SIAM J. Numer. Anal. 43 (2006) 2344-2370. | Zbl pre05029783
and ,[9] Multi-lithology stratigraphic model under maximum erosion rate constraint. Internat. J. Numer. Methods Engrg. 60 (2004) 527-548. | Zbl 1098.76618
, , , and ,[10] A non-standard free-boundary problem arising from stratigraphy. Publication interne du Laboratoire de Mathématiques Appliquées, UMR-CNRS 5142, Université de Pau, No. 04/33 (2004). | Zbl 1096.35069
, and ,[11] Analyse mathématique de modèles non linéaires de l'ingénierie pétrolière. Mathématiques & Applications, Vol. 22 Springer, Paris (1996). | Zbl 0842.35126
and ,[12] Sur des problèmes d'asservissements stratigraphiques. ESAIM: COCV “A tribute to Jacques-Louis Lions” 8 (2002) 715-739. | Numdam | Zbl 1069.35033
and ,[13] A result of existence for an original convection-diffusion equation. Revista de la Real Academia de Ciencias, Serie A: Matemáticas (RACSAM) 99 (2005) 125-131. | Zbl 1090.35107
and ,[14] Equations satisfaites par des limites de solutions approchées, conférence plénière, 34ème congrès d'analyse numérique, Anglet (Pyrénées Atlantiques), in Canum (2002) 87-96.
,[15] Mathematical and numerical analysis of a stratigraphic model. ESAIM: M2AN 38 (2004) 585-611. | Numdam | MR 2087725 | Zbl 1130.86315
and ,[16] Cours d'Analyse Numérique. Hermann, École Polytechnique, Paris (1973).
,[17] Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969). | MR 259693 | Zbl 0189.40603
,[18] Sur une loi de conservation issue de la géologie. C. R. Acad. Sci. Paris Sér. I Math. (337) (2003) 559-564. | Zbl 1038.86010
,