We construct a Roe-type numerical scheme for approximating the solutions of a drift-flux two-phase flow model. The model incorporates a set of highly complex closure laws, and the fluxes are generally not algebraic functions of the conserved variables. Hence, the classical approach of constructing a Roe solver by means of parameter vectors is unfeasible. Alternative approaches for analytically constructing the Roe solver are discussed, and a formulation of the Roe solver valid for general closure laws is derived. In particular, a fully analytical Roe matrix is obtained for the special case of the Zuber-Findlay law describing bubbly flows. First and second-order accurate versions of the scheme are demonstrated by numerical examples.
@article{M2AN_2006__40_4_735_0, author = {Fl\aa tten, Tore and Munkejord, Svend Tollak}, title = {The approximate Riemann solver of Roe applied to a drift-flux two-phase flow model}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {40}, year = {2006}, pages = {735-764}, doi = {10.1051/m2an:2006032}, mrnumber = {2274776}, zbl = {1123.76038}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2006__40_4_735_0} }
Flåtten, Tore; Munkejord, Svend Tollak. The approximate Riemann solver of Roe applied to a drift-flux two-phase flow model. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 40 (2006) pp. 735-764. doi : 10.1051/m2an:2006032. http://gdmltest.u-ga.fr/item/M2AN_2006__40_4_735_0/
[1] Discrete equations for physical and numerical compressible multiphase mixtures. J. Comput. Phys. 186 (2003) 361-396. | Zbl 1072.76594
and ,[2] A relaxation method for two-phase flow models with hydrodynamic closure law. Numer. Math. 99 (2005) 411-440. | Zbl pre02146841
, , , and ,[3] A semi-implicit relaxation scheme for modeling two-phase flow in a pipeline. SIAM J. Sci. Comput. 27 (2005) 914-936. | Zbl 1130.76384
, and ,[4] An experimental investigation of the motion of long bubbles in inclined tubes. Int. J. Multiphas. Flow 10 (1984) 467-483.
,[5] Analyse numérique des modèles hydrodynamiques d'écoulements diphasiques instationnaires dans les réseaux de production pétrolière. Thèse ENS Lyon, France (1991).
,[6] A density perturbation method to study the eigenstructure of two-phase flow equation systems, J. Comput. Phys. 147 (1998) 463-484. | Zbl 0917.76047
, and ,[7] Hybrid flux-splitting schemes for a two-phase flow model. J. Comput. Phys. 175 (2002) 674-201. | Zbl pre01763718
and ,[8] On a rough AUSM scheme for a one-dimensional two-phase model. Comput. Fluids 32 (2003) 1497-1530. | Zbl 1128.76337
and ,[9] Hybrid flux-splitting schemes for a common two-fluid model. J. Comput. Phys. 192 (2003) 175-210. | Zbl 1032.76696
and ,[10] A rough finite volume scheme for modeling two-phase flow in a pipeline. Comput. Fluids 28 (1999) 213-241. | Zbl 0964.76050
and ,[11] High-resolution hybrid primitive-conservative upwind schemes for the drift-flux model. Comput. Fluids 31 (2002) 335-367. | Zbl 1059.76044
and ,[12] The use of drift-flux techniques for the analysis of horizontal two-phase flows. Int. J. Multiphas. Flow 18 (1992) 787-801. | Zbl pre05349986
and ,[13] High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49 (1983) 357-393. | Zbl 0565.65050
,[14] The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Commun. Pur. Appl. Math. 48 (1995) 235-276. | Zbl 0826.65078
and ,[15] Compressible two-phase flows by central and upwind schemes. ESAIM: M2AN 38 (2004) 477-493. | Numdam | Zbl 1079.76045
, , and ,[16] Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge, UK (2002). | MR 1925043 | Zbl 1010.65040
,[17] Transient simulation of two-phase flows in pipes. Int. J. Multiphas. Flow 24 (1998) 739-755. | Zbl 1121.76459
, , and ,[18] The multi-stage centred-scheme approach applied to a drift-flux two-phase flow model. Int. J. Numer. Meth. Fl. 52 (2006) 679-705. | Zbl 1113.76057
, and ,[19] A five equation reduced model for compressible two phase flow problems. J. Comput. Phys. 202 (2005) 664-698. | Zbl 1061.76083
and ,[20] Riemann solvers, the entropy condition, and difference approximations. SIAM J. Numer. Anal. 21 (1984) 217-235. | Zbl 0592.65069
,[21] Hyperbolic two-pressure models for two-phase flow. J. Comput. Phys. 53 (1984) 124-151. | Zbl 0537.76070
and ,[22] Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43 (1981) 357-372. | Zbl 0474.65066
,[23] An approximate Riemann solver for a two-phase flow model with numerically given slip relation. Comput. Fluids 27 (1998) 455-477. | Zbl 0968.76052
,[24] Finite volume approximation of two-phase fluid flow based on an approximate Roe-type Riemann solver. J. Comput. Phys. 121 (1995) 1-28. | Zbl 0834.76070
,[25] A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150 (1999) 425-467. | Zbl 0937.76053
and ,[26] Review article; Two-phase flow: models and methods. J. Comput. Phys. 56 (1984) 363-409. | Zbl 0596.76103
and ,[27] MUSTA schemes for multi-dimensional hyperbolic systems: analysis and improvements. Int. J. Numer. Meth. Fl. 49 (2005) 117-147. | Zbl 1073.65553
and ,[28] Riemann solvers and numerical methods for fluid dynamics, 2nd edn. Springer-Verlag, Berlin (1999). | MR 1717819 | Zbl 0801.76062
,[29] An upwind numerical method for two-fluid two-phase flow models. Nucl. Sci. Eng. 123 (1996) 147-168.
,[30] An implicit second-order numerical method for three-dimensional two-phase flow calculations. Nucl. Sci. Eng. 130 (1998) 213-225.
and ,[31] An approximate linearized Riemann solver for a two-fluid model. J. Comput. Phys. 124 (1996) 286-300. | Zbl 0847.76056
and ,[32] Towards the ultimate conservative difference scheme IV. New approach to numerical convection. J. Comput. Phys. 23 (1977) 276-299. | Zbl 0339.76056
,[33] Average volumetric concentration in two-phase flow systems. J. Heat Transfer 87 (1965) 453-468.
and ,