In this paper we prove the discrete compactness property for a discontinuous Galerkin approximation of Maxwell's system on quite general tetrahedral meshes. As a consequence, a discrete Friedrichs inequality is obtained and the convergence of the discrete eigenvalues to the continuous ones is deduced using the theory of collectively compact operators. Some numerical experiments confirm the theoretical predictions.
@article{M2AN_2006__40_2_413_0, author = {Creus\'e, Emmanuel and Nicaise, Serge}, title = {Discrete compactness for a discontinuous Galerkin approximation of Maxwell's system}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {40}, year = {2006}, pages = {413-430}, doi = {10.1051/m2an:2006017}, zbl = {1112.78020}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2006__40_2_413_0} }
Creusé, Emmanuel; Nicaise, Serge. Discrete compactness for a discontinuous Galerkin approximation of Maxwell's system. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 40 (2006) pp. 413-430. doi : 10.1051/m2an:2006017. http://gdmltest.u-ga.fr/item/M2AN_2006__40_2_413_0/
[1] Collectively compact operator approximation theory. Prentice Hall (1971). | MR 443383
,[2] The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges. Math. Method. Appl. Sci. 21 (1998) 519-549. | Zbl 0911.65107
and ,[3] Eigenvalue solvers for electromagnetic fields in cavities, in High performance scientific and engineering computing, H.-J. Bungartz, F. Durst, and C. Zenger, Eds., Lect. Notes Comput. Sc., Springer, Berlin 8(1999). | MR 1715227
and ,[4] Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2001) 1749-1779. | Zbl 1008.65080
, , and ,[5] Characterization of the singular part of the solution of Maxwell's equations in a polyhedral domain. RAIRO Modél. Math. Anal. Numér. 32 (1998) 485-499. | Zbl 0931.35169
, and ,[6] -theory of the Maxwell operator in arbitrary domains. Russ. Math. Surv. 42 (1987) 75-96. | Zbl 0653.35075
and ,[7] Fortin operator and discrete compactness for edge elements. Numer. Math. 87 (2000) 229-246. | Zbl 0967.65106
,[8] Discrete compactness for p and hp 2d edge finite elements. Math. Mod. Meth. Appl. S. 13 (2003) 1673-1687. | Zbl 1056.65108
, and ,[9] Discrete compactness for the hp version of rectangular edge finite elements. ICES Report 04-29, University of Texas, Austin (2004). | Zbl 1122.65110
, , and ,[10] Mixed and hybrid finite element methods. Springer, New York (1991). | MR 1115205 | Zbl 0788.73002
and ,[11] Spectral approximation of linear operators. Academic Press, New York (1983). | MR 716134 | Zbl 0517.65036
,[12] The finite element method for elliptic problems. North-Holland, Amsterdam (1978). | MR 520174 | Zbl 0383.65058
,[13] Singularities of electromagnetic fields in polyhedral domains. Arch. Rational Mech. Anal. 151 (2000) 221-276. | Zbl 0968.35113
and ,[14] Benchmark computations for Maxwell equations for the approximation of highly singular solutions. Technical report, University of Rennes 1. http://perso.univ-rennes1.fr/monique.dauge/core/index.html
,[15] Maxwell eigenvalues and discrete compactness in two dimensions. Comput. Math. Appl. 40 (2000) 589-605. | Zbl 0998.78011
, , and ,[16] On the solution of time-harmonic scattering problems for Maxwell's equations. SIAM J. Math. Anal. 27 (1996) 1597-1630. | Zbl 0860.35129
and ,[17] High-order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem. Philos. T. Roy. Soc. A 362 (2004) 493-524. | Zbl 1078.78014
and ,[18] Finite elements in computational electromagnetism. Acta Numer. 11 (2002) 237-339. | Zbl 1123.78320
,[19] Interior penalty method for the indefinite time-harmonic Maxwell equations. Numer. Math. 100 (2005) 485-518. | Zbl 1071.65155
, , and ,[20] Mixed discontinuous Galerkin approximation of the Maxwell operator: Non-stabilized formulation. J. Sci. Comput. 22 (2005) 315-346. | Zbl 1091.78017
, and ,[21] On a discrete compactness property for the Nédélec finite elements. J. Fac. Sci. U. Tokyo IA 36 (1989) 479-490. | Zbl 0698.65067
,[22] On the validity of Friedrichs' inequalities. Math. Scand. 54 (1984) 17-26. | Zbl 0555.35003
and ,[23] Initial boundary value problems in Mathematical Physics. John Wiley, New York (1988). | Zbl 0599.35001
,[24] A discontinuous Galerkin method on refined meshes for the 2d time-harmonic Maxwell equations in composite materials. Preprint Macs, University of Valenciennes, 2004. J. Comput. Appl. Math. (to appear). | MR 2333834 | Zbl 1141.65080
and ,[25] Finite element methods for Maxwell's equations. Numer. Math. Scientific Comp., Oxford Univ. Press, New York (2003). | Zbl 1024.78009
,[26] Discrete compactness and the approximation of Maxwell’s equations in . Math. Comp. 70 (2000) 507-523. | Zbl 1035.65131
and ,[27] Spectral approximation for compact operators. Math. Comp. 29 (1975) 712-725. | Zbl 0315.35068
,