In this paper we propose a solution of the Lambertian shape-from-shading (SFS) problem by designing a new mathematical framework based on the notion of viscosity solution. The power of our approach is twofolds: (1) it defines a notion of weak solutions (in the viscosity sense) which does not necessarily require boundary data. Moreover, it allows to characterize the viscosity solutions by their “minimums”; and (2) it unifies the works of [Rouy and Tourin, SIAM J. Numer. Anal. 29 (1992) 867-884], [Lions et al., Numer. Math. 64 (1993) 323-353], [Falcone and Sagona, Lect. Notes Math. 1310 (1997) 596-603], [Prados et al., Proc. 7th Eur. Conf. Computer Vision 2351 (2002) 790-804; Prados and Faugeras, IEEE Comput. Soc. Press 2 (2003) 826-831], based on the notion of viscosity solutions and the work of [Dupuis and Oliensis, Ann. Appl. Probab. 4 (1994) 287-346] dealing with classical solutions.
@article{M2AN_2006__40_2_393_0, author = {Prados, Emmanuel and Camilli, Fabio and Faugeras, Olivier}, title = {A viscosity solution method for shape-from-shading without image boundary data}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {40}, year = {2006}, pages = {393-412}, doi = {10.1051/m2an:2006018}, mrnumber = {2241829}, zbl = {1112.49025}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2006__40_2_393_0} }
Prados, Emmanuel; Camilli, Fabio; Faugeras, Olivier. A viscosity solution method for shape-from-shading without image boundary data. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 40 (2006) pp. 393-412. doi : 10.1051/m2an:2006018. http://gdmltest.u-ga.fr/item/M2AN_2006__40_2_393_0/
[1] Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Birkhauser, Boston (1997). | MR 1484411 | Zbl 0890.49011
and ,[2] An approach of deterministic control problems with unbounded data. Ann. I. H. Poincaré 7 (1990) 235-258. | Numdam | Zbl 0717.49021
,[3] Solutions de Viscosité des Equations de Hamilton-Jacobi. Springer-Verlag, Paris (1994). | Zbl 0819.35002
,[4] Comparison principle for Dirichlet-type Hamilton-Jacobi equations and singular perturbations of degenerated elliptic equations. Appl. Math. Opt. 21 (1990) 21-44. | Zbl 0691.49028
and ,[5] Instability of the eikonal equation and shape-from-shading. ESAIM: M2AN 34 (2000) 127-138. | Numdam | Zbl 0973.35017
and ,[6] Maximal subsolutions for a class of degenerate Hamilton-Jacobi problems. Indiana U. Math. J. 48 (1999) 1111-1132. | Zbl 0939.49019
and ,[7] Nonconvex degenerate Hamilton-Jacobi equations. Math. Z. 242 (2002) 1-21. | Zbl 1058.35063
and ,[8] Hamilton-Jacobi equations with state constraints. Trans. Amer. Math. Soc. 318 (1990) 643-68. | Zbl 0702.49019
and ,[9] Optimization and Nonsmooth Analysis. SIAM, Classics in Applied Mathematics 5, Philadelphia (1990). | MR 1058436 | Zbl 0696.49002
,[10] Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 277 (1983) 1-42. | Zbl 0599.35024
and ,[11] An optimal control formulation and related numerical methods for a problem in shape reconstruction. Ann. Appl. Probab. 4 (1994) 287-346. | Zbl 0807.49027
and ,[12] An algorithm for the global solution of the Shape-From-Shading model, in Proceedings of the International Conference on Image Analysis and Processing. Lect. Notes Math. 1310 (1997) 596-603.
and ,[13] | MR 1062877
and , Eds., Shape From Shading. The MIT Press (1989).[14] A boundary value problem of the Dirichlet type for Hamilton-Jacobi equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 16 (1989) 105-135. | Numdam | Zbl 0701.35052
,[15] Uniqueness results for a class of Hamilton-Jacobi equations with singular coefficients. Commun. Part. Diff. Eq. 20 (1995) 2187-2213. | Zbl 0842.35019
and ,[16] Shape from shading: Level set propagation and viscosity solutions. Int. J. Comput. Vision 16 (1995) 107-133.
, , and ,[17] Generalized Solutions of Hamilton-Jacobi Equations. Res. Notes Math. 69. Pitman Advanced Publishing Program, London (1982). | Zbl 0497.35001
,[18] Shape-from-shading, viscosity solutions and edges. Numer. Math. 64 (1993) 323-353. | Zbl 0804.68160
, and ,[19] Bounded-from-below solutions of the Hamilton-Jacobi equation for optimal control problems with exit times: vanishing Lagrangians, eikonal equations, and shape-from-shading. NoDEA: Nonlinear Differ. Equ. Appl. 11 (2004) 95-122. | Zbl 1059.35028
,[20] Direct method for reconstructing shape from shading, in Proceedings of SPIE Conf. 1570 on Geometric Methods in Computer Vision (1991) 116-128.
and ,[21] Perspective shape-from-shading, and viscosity solutions, in Proceedings of the 9th International Conference on Computer Vision (Nice 2003). IEEE Comput. Soc. Press 2 (2003) 826-831. | Zbl 1039.68702
and ,[22] A generic and provably convergent shape-from-shading method for orthographic and pinhole cameras. Int. J. Comput. Vision 65 (2005) 97-125.
and ,[23] Shape from shading and viscosity solutions, in Proceedings of the 7th European Conference on Computer Vision (Copenhagen 2002), Springer-Verlag 2351 (2002) 790-804. | Zbl 1039.68702
, and ,[24] A unifying and rigorous shape from shading method adapted to realistic data and applications. J. Math. Imaging Vis. (2006) (to appear). | MR 2283609
, and ,[25] A viscosity solutions approach to shape-from-shading. SIAM J. Numer. Anal. 29 (1992) 867-884. | Zbl 0754.65069
and ,[26] Optimal control with state space constraints. SIAM J. Control Optim 24 (1986): Part I: 552-562, Part II: 1110-1122. | Zbl 0619.49013
,[27] Uniqueness results for the value function via direct trajectory-construction methods, in Proceedings of the 42nd IEEE Conference on Decision and Control 4 (2003) 3293-3298.
,[28] A new perspective [on] Shape-From-Shading, in Proceedings of the 9th International Conference on Computer Vision (Nice 2003). IEEE Comput. Soc. Press 2 (2003) 862-869.
, and ,[29] PDE's Based Regularization of Multivalued Images and Applications. Ph.D. Thesis, University of Nice-Sophia Antipolis (2002).
,[30] Shape from shading: A survey. IEEE T. Pattern Anal. 21 (1999) 690-706. | Zbl 1316.94019
, , and ,