In this paper we introduce and analyze new mixed finite volume methods for second order elliptic problems which are based on -conforming approximations for the vector variable and discontinuous approximations for the scalar variable. The discretization is fulfilled by combining the ideas of the traditional finite volume box method and the local discontinuous Galerkin method. We propose two different types of methods, called Methods I and II, and show that they have distinct advantages over the mixed methods used previously. In particular, a clever elimination of the vector variable leads to a primal formulation for the scalar variable which closely resembles discontinuous finite element methods. We establish error estimates for these methods that are optimal for the scalar variable in both methods and for the vector variable in Method II.
@article{M2AN_2006__40_1_123_0, author = {Kim, Kwang Y.}, title = {New mixed finite volume methods for second order eliptic problems}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {40}, year = {2006}, pages = {123-147}, doi = {10.1051/m2an:2006001}, mrnumber = {2223507}, zbl = {1097.65116}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2006__40_1_123_0} }
Kim, Kwang Y. New mixed finite volume methods for second order eliptic problems. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 40 (2006) pp. 123-147. doi : 10.1051/m2an:2006001. http://gdmltest.u-ga.fr/item/M2AN_2006__40_1_123_0/
[1] On the implementation of mixed methods as nonconforming methods for second order elliptic problems. Math. Comp. 64 (1995) 943-972. | Zbl 0829.65127
and ,[2] Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences. SIAM J. Numer. Anal. 34 (1997) 828-852. | Zbl 0880.65084
, and ,[3] Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér. 19 (1985) 7-32. | Numdam | Zbl 0567.65078
and ,[4] Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002) 1749-1779. | Zbl 1008.65080
, , and ,[5] Connection between finite volume and mixed finite element methods. RAIRO Modél. Math. Anal. Numér. 30 (1996) 445-465. | Numdam | Zbl 0857.65116
, and ,[6] A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131 (1997) 267-279. | Zbl 0871.76040
and ,[7] Mixed and hybrid finite element methods. Springer-Verlag (1991). | MR 1115205 | Zbl 0788.73002
and ,[8] Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47 (1985) 217-235. | Zbl 0599.65072
, and ,[9] Mixed finite elements for second order elliptic problems in three variables. Numer. Math. 51 (1987) 237-250. | Zbl 0631.65107
, , and ,[10] Efficient rectangular mixed finite elements in two and three variables. RAIRO Modél. Math. Anal. Numér. 21 (1987) 581-604. | Numdam | Zbl 0689.65065
, , and ,[11] Discontinuous Galerkin approximations for elliptic problems. Numer. Methods Partial Differential Equations 16 (2000) 365-378. | Zbl 0957.65099
, , , and ,[12] Control-volume mixed finite element Methods. Comput. Geosci. 1 (1997) 289-315. | Zbl 0941.76050
, , and ,[13] An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38 (2000) 1676-1706. | Zbl 0987.65111
, , and ,[14] Expanded mixed finite element methods for linear second-order elliptic problems I. RAIRO Modél. Math. Anal. Numér. 32 (1998) 479-499. | Numdam | Zbl 0910.65079
,[15] On the relationship of various discontinuous finite element methods for second-order elliptic equations. East-West J. Numer. Math. 9 (2001) 99-122. | Zbl 0986.65110
,[16] Prismatic mixed finite elements for second order elliptic problems. Calcolo 26 (1989) 135-148. | Zbl 0711.65089
and ,[17] A general mixed covolume framework for constructing conservative schemes for elliptic problems. Math. Comp. 68 (1999) 991-1011. | Zbl 0924.65099
and ,[18] Mixed covolume methods for elliptic problems on triangular grids. SIAM J. Numer. Anal. 35 (1998) 1850-1861. | Zbl 0914.65107
, and ,[19] A general framework for constructing and analyzing mixed finite volume methods on quadrilateral grids: the overlapping covolume case. SIAM J. Numer. Anal. 39 (2001) 1170-1196 | Zbl 1007.65091
, and ,[20] Mixed finite volume methods on non-staggered quadrilateral grids for elliptic problems. Math. Comp. 72 (2003) 525-539. | Zbl 1015.65068
, and ,[21] The Finite Element Method for Elliptic Problems. North-Holland (1978). | MR 520174 | Zbl 0383.65058
,[22] The local discontinuous Galerkin method for time-dependent convection-diffusion system. SIAM J. Numer. Anal. 35 (1998) 2440-2463. | Zbl 0927.65118
and ,[23] Finite volume box schemes on triangular meshes. RAIRO Modél. Math. Anal. Numér. 32 (1998) 631-649. | Numdam | Zbl 0920.65065
and ,[24] Finite volume box schemes and mixed methods ESAIM: M2AN 34 (2000) 1087-1106. | Numdam | Zbl 0966.65082
,[25] Some nonconforming mixed box schemes for elliptic problems. Numer. Methods Partial Differential Equations 18 (2002) 355-373. | Zbl 1004.65113
and ,[26] The local discontinuous Galerkin method for elliptic equations. SIAM J. Numer. Anal. 40 (2002) 2151-2170. | Zbl 1035.65123
,[27] Error analysis in , for mixed finite element methods for linear and quasi-linear elliptic problems. RAIRO Modél. Math. Anal. Numér. 22 (1988) 371-387. | Numdam | Zbl 0698.65060
,[28] Error estimates for mixed methods. RAIRO Anal. Numér. 14 (1980) 249-277. | Numdam | Zbl 0467.65062
and ,[29] Two-level additive Schwarz methods for a discontinuous Galerkin approximation of second order elliptic problems. SIAM J. Numer. Anal. 39 (2001) 1343-1365. | Zbl 1007.65104
and ,[30] A multilevel discontinuous Galerkin method. Numer. Math. 95 (2003) 527-550. | Zbl 1044.65084
and ,[31] Dual-primal mixed finite elements for elliptic problems. Numer. Methods Partial Differential Equations 17 (2001) 137-151. | Zbl 0979.65103
and ,[32] Mixed finite elements in . Numer. Math. 35 (1980) 315-341. | Zbl 0419.65069
,[33] A new family of mixed finite elements in . Numer. Math. 50 (1986) 57-81. | Zbl 0625.65107
,[34] An -analysis of the local discontinuous Galerkin method for diffusion problems. J. Sci. Comput. 17 (2002) 561-571. | Zbl 1001.76060
and ,[35] A mixed finite element method for 2nd order elliptic problems, in Proc. Conference on Mathematical Aspects of Finite Element Methods, Springer-Verlag. Lect. Notes Math. 606 (1977) 292-315. | Zbl 0362.65089
and ,[36] A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39 (2001) 902-931. | Zbl 1010.65045
, and ,[37] Mixed and hybrid methods, in Handbook of Numerical Analysis, Vol. II, North-Holland (1991) 523-639. | Zbl 0875.65090
and ,[38] Mixed finite volume methods for semiconductor device simulation. Numer. Methods Partial Differential Equations 13 (1997) 215-236. | Zbl 0890.65132
and ,[39] On convergence of block-centered finite differences for elliptic problems. SIAM J. Numer. Anal. 25 (1988) 351-375. | Zbl 0644.65062
and ,