We study the propagation of electromagnetic waves in a guide the section of which is a thin annulus. Owing to the presence of a small parameter, explicit approximations of the TM and TE eigenmodes are obtained. The cases of smooth and non smooth boundaries are presented.
@article{M2AN_2005__39_6_1271_0, author = {Turbe, Nicole and Ratier, Louis}, title = {About asymptotic approximations in thin waveguides}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {39}, year = {2005}, pages = {1271-1284}, doi = {10.1051/m2an:2005045}, mrnumber = {2195912}, zbl = {pre02243539}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2005__39_6_1271_0} }
Turbe, Nicole; Ratier, Louis. About asymptotic approximations in thin waveguides. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 39 (2005) pp. 1271-1284. doi : 10.1051/m2an:2005045. http://gdmltest.u-ga.fr/item/M2AN_2005__39_6_1271_0/
[1] Analyse mathématique et calcul numérique pour les sciences et les techniques. Masson, Paris (1988). | Zbl 0642.35001
and ,[2] Mathematical analysis of electromagnetic open waveguides. RAIRO Modél. Math. Anal. Numér. 29 (1995) 505-575. | Numdam | Zbl 0834.35126
and ,[3] Hill's Equation. Interscience, New York (1966). | Zbl 0158.09604
and ,[4] Non-Homogeneous Media and Vibration Theory. Springer, Berlin (1980). | Zbl 0432.70002
,[5] Vibrations and coupling of continuous systems. Asymptotic methods. Springer, Berlin (1989). | Zbl 0698.70003
and ,