In this work we consider the dual-primal Discontinuous Petrov-Galerkin (DPG) method for the advection-diffusion model problem. Since in the DPG method both mixed internal variables are discontinuous, a static condensation procedure can be carried out, leading to a single-field nonconforming discretization scheme. For this latter formulation, we propose a flux-upwind stabilization technique to deal with the advection-dominated case. The resulting scheme is conservative and satisfies a discrete maximum principle under standard geometrical assumptions on the computational grid. A convergence analysis is developed, proving first-order accuracy of the method in a discrete -norm, and the numerical performance of the scheme is validated on benchmark problems with sharp internal and boundary layers.
@article{M2AN_2005__39_6_1087_0, author = {Causin, Paola and Sacco, Riccardo and Bottasso, Carlo L.}, title = {Flux-upwind stabilization of the discontinuous Petrov-Galerkin formulation with Lagrange multipliers for advection-diffusion problems}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {39}, year = {2005}, pages = {1087-1114}, doi = {10.1051/m2an:2005050}, zbl = {1084.65105}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2005__39_6_1087_0} }
Causin, Paola; Sacco, Riccardo; Bottasso, Carlo L. Flux-upwind stabilization of the discontinuous Petrov-Galerkin formulation with Lagrange multipliers for advection-diffusion problems. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 39 (2005) pp. 1087-1114. doi : 10.1051/m2an:2005050. http://gdmltest.u-ga.fr/item/M2AN_2005__39_6_1087_0/
[1] Sobolev Spaces. Academic Press, New York (1975). | MR 450957 | Zbl 0314.46030
,[2] Mixed and nonconforming finite element methods: Implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér. 19 (1985) 7-32. | Numdam | Zbl 0567.65078
and ,[3] Discontinuous Galerkin methods. Lect. Notes Comput. Sci. Engrg. 11, Springer-Verlag (2000) 89-101. | Zbl 0948.65127
, , and ,[4] Generalized finite element methods, their performance and their relation to mixed methods. SIAM J. Numer. Anal. 20 (1983) 510-536. | Zbl 0528.65046
and ,[5] Connection between finite volume and mixed finite element methods. RAIRO Modél. Math. Anal. Numér. 30 (1996) 445-465. | Numdam | Zbl 0857.65116
, and ,[6] The Discontinuous Petrov-Galerkin method for elliptic problems. Comput. Methods Appl. Mech. Engrg. 191 (2002) 3391-3409. | Zbl 1010.65050
, and ,[7] A multiscale formulation of the Discontinuous Petrov-Galerkin method for advective-diffusion problems. Comput. Methods Appl. Mech. Engrg. 194 (2005) 2819-2838. | Zbl 1093.76030
, and ,[8] Numerical simulation of semiconductor devices. Comput. Meths. Appl. Mech. Engrg. 75 (1989) 493-514. | Zbl 0698.76125
, and ,[9] Two-dimensional exponential fitting and applications to drift-diffusion models. SIAM J. Numer. Anal. 26 (1989) 1342-1355. | Zbl 0686.65088
, and ,[10] Mixed-hybrid Galerkin and Petrov-Galerkin finite element formulations in fluid mechanics. Ph.D. Thesis, Università degli Studi di Milano (2003).
,[11] Mixed-hybrid Galerkin and Petrov-Galerkin finite element formulations in continuum mechanics. in Proc. of the Fifth World Congress on Computational Mechanics (WCCM V), Vienna, Austria. H.A. Mang, F.G. Rammerstorfer and J. Eberhardsteiner Eds., Vienna University of Technology, Austria, http://wccm.tuwien.ac.at, July 7-12 (2002).
and ,[12] A Discontinuous Petrov-Galerkin method with Lagrangian multipliers for second order elliptic problems. SIAM J. Numer. Anal. 43 (2005) 280-302. | Zbl 1087.65105
and ,[13] The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1978). | MR 520174 | Zbl 0383.65058
,[14] A characterization of hybridized mixed methods for second order elliptic problems. SIAM Jour. Numer. Anal. 42 (2003) 283-301. | Zbl 1084.65113
and ,[15] Conforming and non-conforming finite element methods for solving the stationary Stokes equations. RAIRO, R-3 (1973) 33-76. | Numdam | Zbl 0302.65087
and ,[16] Godunov mixed methods for advection-diffusion equations in multidimensions. SIAM J. Numer. Anal. 30 (1993) 1315-1332. | Zbl 0791.65062
,[17] Upwind-mixed methods for transport equations. Comp. Geosc. 3 (1999) 93-110. | Zbl 0962.65084
and ,[18] A multilevel discontinuous galerkin method. Numer. Math. 95 (2003) 527-550. | Zbl 1044.65084
and ,[19] Décentrage et éléments finis mixtes pour les équations de diffusion-convection. Calcolo 2 (1984) 171-197. | Zbl 0562.65077
,[20] Analysis of Charge Transport. Springer-Verlag, Berlin, Heidelberg (1996). | MR 1437143 | Zbl 0835.65151
,[21] Problèmes aux limites non homogènes et applications. Dunod (1968). | Zbl 0165.10801
and ,[22] An inexpensive method for the evaluation of the solution of the lower order Raviart-Thomas method. SIAM J. Numer. Anal. 22 (1985) 493-496. | Zbl 0573.65082
,[23] The Stationary Semiconductor Device Equations. Springer-Verlag, Wien, New York (1986). | MR 821965
,[24] On some mixed finite element methods with numerical integration. SIAM J. Sci. Comput. 23 (2001) 245-270. | Zbl 0992.65126
, and ,[25] A new non-conforming Petrov-Galerkin finite element method with triangular elements for an advection-diffusion problem. IMA J. Numer. Anal. 14 (1994) 257-276. | Zbl 0806.65111
and ,[26] A Petrov-Galerkin finite element method for convection-dominated flows: an accurate upwinding technique satisfying the discrete maximum principle. Comput. Meth. Appl. Mech. Engrg. 50 (1985) 181-193. | Zbl 0553.76075
and ,[27] A technique of upstream type applied to a linear nonconforming finite element approximation of convective diffusion equations. RAIRO 3 (1984) 309-332. | Numdam | Zbl 0586.65080
and ,[28] Numerical Approximation of Partial Differential Equations. Springer-Verlag, New York, Berlin (1994). | MR 1299729 | Zbl 0803.65088
and ,[29] Primal hybrid finite element methods for 2nd order elliptic equations. Math. Comp. 31-138 (1977) 391-413. | Zbl 0364.65082
and ,[30] Mixed and hybrid methods. In Finite Element Methods, Part I. P.G. Ciarlet and J.L. Lions (Eds.), North-Holland, Amsterdam 2 (1991). | MR 1115239 | Zbl 0875.65090
and ,[31] Numerical methods for singularly perturbed differential equations. Springer-Verlag, Berlin, Heidelberg (1996). | MR 1477665 | Zbl 0844.65075
, and ,[32] The patch test as a validation of a new finite element for the solution of convection-diffusion equations. Comp. Meth. Appl. Mech. Engrg. 124 (1995) 113-124. | Zbl 0948.78013
, and ,[33] Solution of the advection-diffusion equation using a combination of discontinuous and mixed finite elements. Inter. J. Numer. Methods Fluids 24 (1997) 593-613. | Zbl 0894.76041
, , and ,[34] Navier-Stokes Equations. North-Holland, Amsterdam (1977). | MR 769654 | Zbl 0383.35057
,