Flux-upwind stabilization of the discontinuous Petrov-Galerkin formulation with Lagrange multipliers for advection-diffusion problems
Causin, Paola ; Sacco, Riccardo ; Bottasso, Carlo L.
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 39 (2005), p. 1087-1114 / Harvested from Numdam

In this work we consider the dual-primal Discontinuous Petrov-Galerkin (DPG) method for the advection-diffusion model problem. Since in the DPG method both mixed internal variables are discontinuous, a static condensation procedure can be carried out, leading to a single-field nonconforming discretization scheme. For this latter formulation, we propose a flux-upwind stabilization technique to deal with the advection-dominated case. The resulting scheme is conservative and satisfies a discrete maximum principle under standard geometrical assumptions on the computational grid. A convergence analysis is developed, proving first-order accuracy of the method in a discrete H 1 -norm, and the numerical performance of the scheme is validated on benchmark problems with sharp internal and boundary layers.

Publié le : 2005-01-01
DOI : https://doi.org/10.1051/m2an:2005050
Classification:  65N99
@article{M2AN_2005__39_6_1087_0,
     author = {Causin, Paola and Sacco, Riccardo and Bottasso, Carlo L.},
     title = {Flux-upwind stabilization of the discontinuous Petrov-Galerkin formulation with Lagrange multipliers for advection-diffusion problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {39},
     year = {2005},
     pages = {1087-1114},
     doi = {10.1051/m2an:2005050},
     zbl = {1084.65105},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2005__39_6_1087_0}
}
Causin, Paola; Sacco, Riccardo; Bottasso, Carlo L. Flux-upwind stabilization of the discontinuous Petrov-Galerkin formulation with Lagrange multipliers for advection-diffusion problems. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 39 (2005) pp. 1087-1114. doi : 10.1051/m2an:2005050. http://gdmltest.u-ga.fr/item/M2AN_2005__39_6_1087_0/

[1] R.A. Adams, Sobolev Spaces. Academic Press, New York (1975). | MR 450957 | Zbl 0314.46030

[2] D.N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: Implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér. 19 (1985) 7-32. | Numdam | Zbl 0567.65078

[3] D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Discontinuous Galerkin methods. Lect. Notes Comput. Sci. Engrg. 11, Springer-Verlag (2000) 89-101. | Zbl 0948.65127

[4] I. Babuska and J. Osborn, Generalized finite element methods, their performance and their relation to mixed methods. SIAM J. Numer. Anal. 20 (1983) 510-536. | Zbl 0528.65046

[5] J. Baranger, J.F. Maitre and F. Oudin, Connection between finite volume and mixed finite element methods. RAIRO Modél. Math. Anal. Numér. 30 (1996) 445-465. | Numdam | Zbl 0857.65116

[6] C.L. Bottasso, S. Micheletti and R. Sacco, The Discontinuous Petrov-Galerkin method for elliptic problems. Comput. Methods Appl. Mech. Engrg. 191 (2002) 3391-3409. | Zbl 1010.65050

[7] C.L. Bottasso, S. Micheletti and R. Sacco, A multiscale formulation of the Discontinuous Petrov-Galerkin method for advective-diffusion problems. Comput. Methods Appl. Mech. Engrg. 194 (2005) 2819-2838. | Zbl 1093.76030

[8] F. Brezzi, L.D. Marini and P. Pietra, Numerical simulation of semiconductor devices. Comput. Meths. Appl. Mech. Engrg. 75 (1989) 493-514. | Zbl 0698.76125

[9] F. Brezzi, L.D. Marini and P. Pietra, Two-dimensional exponential fitting and applications to drift-diffusion models. SIAM J. Numer. Anal. 26 (1989) 1342-1355. | Zbl 0686.65088

[10] P. Causin, Mixed-hybrid Galerkin and Petrov-Galerkin finite element formulations in fluid mechanics. Ph.D. Thesis, Università degli Studi di Milano (2003).

[11] P. Causin and R. Sacco, Mixed-hybrid Galerkin and Petrov-Galerkin finite element formulations in continuum mechanics. in Proc. of the Fifth World Congress on Computational Mechanics (WCCM V), Vienna, Austria. H.A. Mang, F.G. Rammerstorfer and J. Eberhardsteiner Eds., Vienna University of Technology, Austria, http://wccm.tuwien.ac.at, July 7-12 (2002).

[12] P. Causin and R. Sacco, A Discontinuous Petrov-Galerkin method with Lagrangian multipliers for second order elliptic problems. SIAM J. Numer. Anal. 43 (2005) 280-302. | Zbl 1087.65105

[13] P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1978). | MR 520174 | Zbl 0383.65058

[14] B. Cockburn and J. Gopalakhrisnan, A characterization of hybridized mixed methods for second order elliptic problems. SIAM Jour. Numer. Anal. 42 (2003) 283-301. | Zbl 1084.65113

[15] M. Crouzeix and P.A. Raviart, Conforming and non-conforming finite element methods for solving the stationary Stokes equations. RAIRO, R-3 (1973) 33-76. | Numdam | Zbl 0302.65087

[16] C. Dawson, Godunov mixed methods for advection-diffusion equations in multidimensions. SIAM J. Numer. Anal. 30 (1993) 1315-1332. | Zbl 0791.65062

[17] C. Dawson and V. Aizinger, Upwind-mixed methods for transport equations. Comp. Geosc. 3 (1999) 93-110. | Zbl 0962.65084

[18] J. Gopalakhrisnan and G. Kanschat, A multilevel discontinuous galerkin method. Numer. Math. 95 (2003) 527-550. | Zbl 1044.65084

[19] J. Jaffré, Décentrage et éléments finis mixtes pour les équations de diffusion-convection. Calcolo 2 (1984) 171-197. | Zbl 0562.65077

[20] J.W. Jerome, Analysis of Charge Transport. Springer-Verlag, Berlin, Heidelberg (1996). | MR 1437143 | Zbl 0835.65151

[21] J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Dunod (1968). | Zbl 0165.10801

[22] L.D. Marini, An inexpensive method for the evaluation of the solution of the lower order Raviart-Thomas method. SIAM J. Numer. Anal. 22 (1985) 493-496. | Zbl 0573.65082

[23] P.A. Markowich, The Stationary Semiconductor Device Equations. Springer-Verlag, Wien, New York (1986). | MR 821965

[24] S. Micheletti, R. Sacco and F. Saleri, On some mixed finite element methods with numerical integration. SIAM J. Sci. Comput. 23 (2001) 245-270. | Zbl 0992.65126

[25] J.J. Miller and S. Wang, A new non-conforming Petrov-Galerkin finite element method with triangular elements for an advection-diffusion problem. IMA J. Numer. Anal. 14 (1994) 257-276. | Zbl 0806.65111

[26] A. Mizukami and T.J.R. Hughes, A Petrov-Galerkin finite element method for convection-dominated flows: an accurate upwinding technique satisfying the discrete maximum principle. Comput. Meth. Appl. Mech. Engrg. 50 (1985) 181-193. | Zbl 0553.76075

[27] K. Ohmori and T. Ushijima, A technique of upstream type applied to a linear nonconforming finite element approximation of convective diffusion equations. RAIRO 3 (1984) 309-332. | Numdam | Zbl 0586.65080

[28] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Springer-Verlag, New York, Berlin (1994). | MR 1299729 | Zbl 0803.65088

[29] P.A. Raviart and J.M. Thomas, Primal hybrid finite element methods for 2nd order elliptic equations. Math. Comp. 31-138 (1977) 391-413. | Zbl 0364.65082

[30] J.E. Roberts and J.M. Thomas, Mixed and hybrid methods. In Finite Element Methods, Part I. P.G. Ciarlet and J.L. Lions (Eds.), North-Holland, Amsterdam 2 (1991). | MR 1115239 | Zbl 0875.65090

[31] H.G. Roos, M. Stynes and L. Tobiska, Numerical methods for singularly perturbed differential equations. Springer-Verlag, Berlin, Heidelberg (1996). | MR 1477665 | Zbl 0844.65075

[32] R. Sacco, E. Gatti and L. Gotusso, The patch test as a validation of a new finite element for the solution of convection-diffusion equations. Comp. Meth. Appl. Mech. Engrg. 124 (1995) 113-124. | Zbl 0948.78013

[33] P. Siegel, R. Mosé, Ph. Ackerer and J. Jaffré, Solution of the advection-diffusion equation using a combination of discontinuous and mixed finite elements. Inter. J. Numer. Methods Fluids 24 (1997) 593-613. | Zbl 0894.76041

[34] R. Temam, Navier-Stokes Equations. North-Holland, Amsterdam (1977). | MR 769654 | Zbl 0383.35057