The magnetization of a ferromagnetic sample solves a non-convex variational problem, where its relaxation by convexifying the energy density resolves relevant macroscopic information. The numerical analysis of the relaxed model has to deal with a constrained convex but degenerated, nonlocal energy functional in mixed formulation for magnetic potential and magnetization . In [C. Carstensen and A. Prohl, Numer. Math. 90 (2001) 65-99], the conforming -element in spatial dimensions is shown to lead to an ill-posed discrete problem in relaxed micromagnetism, and suboptimal convergence. This observation motivated a non-conforming finite element method which leads to a well-posed discrete problem, with solutions converging at optimal rate. In this work, we provide both an a priori and a posteriori error analysis for two stabilized conforming methods which account for inter-element jumps of the piecewise constant magnetization. Both methods converge at optimal rate; the new approach is applied to a macroscopic nonstationary ferromagnetic model [M. Kružík and A. Prohl, Adv. Math. Sci. Appl. 14 (2004) 665-681 - M. Kružík and T. Roubíček, Z. Angew. Math. Phys. 55 (2004) 159-182 ].
@article{M2AN_2005__39_5_995_0, author = {Funken, Stefan A. and Prohl, Andreas}, title = {Stabilization methods in relaxed micromagnetism}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {39}, year = {2005}, pages = {995-1017}, doi = {10.1051/m2an:2005043}, mrnumber = {2178570}, zbl = {1079.78031}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2005__39_5_995_0} }
Funken, Stefan A.; Prohl, Andreas. Stabilization methods in relaxed micromagnetism. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 39 (2005) pp. 995-1017. doi : 10.1051/m2an:2005043. http://gdmltest.u-ga.fr/item/M2AN_2005__39_5_995_0/
[1] Remarks around 50 lines of Matlab: finite element implementation. Numer. Algorithms 20 (1999) 117-137. | Zbl 0938.65129
, and ,[2] Micromagnetics. Interscience, New York (1963).
,[3] Adaptive coupling of penalised finite element methods and boundary element methods for relaxed micromagnetics. In preparation.
and ,[4] Numerical analysis for a macroscopic model in micromagnetics. SIAM J. Numer. Anal. 42 (2005) 2633-2651, electronic. | Zbl 1088.78009
and ,[5] Numerical analysis of relaxed micromagnetics by penalized finite elements. Numer. Math. 90 (2001) 65-99. | Zbl 1004.78006
and ,[6] Energy minimizers for large ferromagnetic bodies. Arch. Rational Mech. Anal. 125 (1993) 99-143. | Zbl 0811.49030
,[7] On stabilized finite element methods in relaxed micromagnetism. Preprint 99-18, University of Kiel (1999).
and ,[8] Magnetic Domains. Springer (1998).
and ,[9] Moderate-degree tetrahedral quadrature formulas. Comput. Methods Appl. Mech. Engrg. 55 (1986) 339-348. | Zbl 0572.65008
,[10] Maximum principle based algorithm for hysteresis in micromagnetics. Adv. Math. Sci. Appl. 13 (2003) 461-485. | Zbl 1093.82020
,[11] Young measure approximation in micromagnetics. Numer. Math. 90 (2001) 291-307. | Zbl 0994.65078
and ,[12] Macroscopic modeling of magnetic hysteresis. Adv. Math. Sci. Appl. 14 (2004) 665-681. | Zbl 1105.74034
and ,[13] Recent developments in modeling, analysis and numerics of ferromagnetism. SIAM Rev. (accepted, 2005). | MR 2278438 | Zbl 1126.49040
and ,[14] Microstructure evolution model in micromagnetics. Z. Angew. Math. Phys. 55 (2004) 159-182. | Zbl 1059.82047
and ,[15] Interactions between demagnetizing field and minor-loop development in bulk ferromagnets. J. Magn. Magn. Mater. 277 (2004) 192-200.
and ,[16] Parametrized Measures and Variational Principles. Birkhäuser (1997). | MR 1452107 | Zbl 0879.49017
,[17] Computational micromagnetism. Teubner (2001). | MR 1885923 | Zbl 0988.78001
,[18] A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley-Teubner (1996). | Zbl 0853.65108
,