The aim of this paper is to present a method using both the ideas of sectional approach and moment methods in order to accurately simulate evaporation phenomena in gas-droplets flows. Using the underlying kinetic interpretation of the sectional method [Y. Tambour, Combust. Flame 60 (1985) 15-28] exposed in [F. Laurent and M. Massot, Combust. Theory Model. 5 (2001) 537-572], we propose an extension of this approach based on a more accurate representation of the droplet size number density in each section ensuring the exact conservation of two moments (as opposed to only one moment used in the classical approach). A corresponding second-order numerical scheme, with respect to space and droplet size variables, is also introduced and can be proved to be positive and to satisfy a maximum principle on the velocity and the mean droplet mass under a suitable CFL-like condition. Numerical simulations have been performed and the results confirm the accuracy of this new method even when a very coarse mesh for the droplet size variable (i.e.: a low number of sections) is used.
@article{M2AN_2005__39_5_931_0, author = {Dufour, Guillaume and Villedieu, Philippe}, title = {A second-order multi-fluid model for evaporating sprays}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {39}, year = {2005}, pages = {931-963}, doi = {10.1051/m2an:2005041}, mrnumber = {2178568}, zbl = {1075.35048}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2005__39_5_931_0} }
Dufour, Guillaume; Villedieu, Philippe. A second-order multi-fluid model for evaporating sprays. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 39 (2005) pp. 931-963. doi : 10.1051/m2an:2005041. http://gdmltest.u-ga.fr/item/M2AN_2005__39_5_931_0/
[1] Computation of spray dynamics by moment transport equations I: Theory and development. Atomization Spray 13 (2003) 63-87.
, and ,[2] Computation of spray dynamics by moment transport equations II: Application to calculation of a quasi-one-dimensional spray. Atomization Spray 13 (2003) 89-115.
, and ,[3] On the development of spray submodels based on droplet size moments. J. Comput. Phys. 182 (2002) 1-36. | Zbl 1058.76614
and ,[4] The droplet number moments approach to spray modeling: The development of heat and mass transfer sub-models. Int. J. Heat Fluid Flow 24 (2003) 242-259.
and ,[5] The error of the splitting scheme for solving evolutionary equations. Appl. Math. Lett. 14 (2001) 45-48. | Zbl 0976.65081
and ,[6] On zero pressure gas dynamics. Advances in Kinetic Theory and Computing, Selected Papers, Ser. Adv. Math. Appl. Sci. 22 (1994) 171-190. | Zbl 0863.76068
,[7] Numerical approximations of pressureless and isothermal gas dynamics. SIAM J. Numer. Anal. 41-1 (2003) 135-158. | Zbl 1060.76080
, and ,[8] Bubbles, drops and particles. Academic Press (1978).
, and ,[9] Review - Numerical methods for dilute gas-particle flows. Trans. ASME J. Fluids Eng. 104 (1982) 297-303.
,[10] Generalized characteristics in hyperbolic systems of conservation laws. Arch. Rational Mech. Anal. 107 (1989) 127-155. | Zbl 0714.35046
,[11] Analyse mathématique et numérique d'une modélisation cinétique d'un brouillard de gouttelettes dans un écoulement gazeux turbulent. Ph.D. Thesis, École Polytechnique, France (1996).
,[12] The kinetic sectional approach for noncolliding evaporating sprays. Atomization Spray 11 (2001) 291-303.
,[13] Mathematical modeling of two-phase flows. Annu. Rev. Fluid. Mech. 15 (1983) 261-291. | Zbl 0569.76104
,[14] Un modèle multi-fluide Eulerien pour les écoulements diphasiques à inclusions dispersées. Ph.D. Thesis, Université Toulouse III, France (2005).
,[15] A particle-fluid numerical model for liquid sprays. J. Comput. Phys. 35 (1980) 229-253. | Zbl 0437.76051
,[16] Contribution à l'étude du rôle de la phase condensée dans la stabilité d'un propulseur à propergol solide pour lanceur spatial. Ph.D. Thesis, Institut National Polytechnique de Toulouse, France (1996).
,[17] On the kinetic theory of rarefied gases. Comm. Pure Appl. Math. 2 (1949) 331-407. | Zbl 0037.13104
,[18] On the origin of spray sectional conservation equations. Combustion Flame 93 (1993) 90-96.
, and ,[19] Uniformly high order accurate essentially non-oscillatory schemes III. J. Comput. Phys. 126 (1987) 231-303. | Zbl 0652.65067
, , and ,[20] Modélisation cinétique et simulation numérique d'un brouillard dense de gouttelettes. Applications aux propulseurs à poudre. Ph.D. Thesis, ENSAE, France (1999).
,[21] Thermo-fluid dynamics of two-phase flows. Eyrolles, Paris (1975).
,[22] Analyse numérique d'une méthode multi-fluide Eulérienne pour la description de sprays qui s'évaporent. C. R. Acad. Sci. Paris Ser. I 334 (2002) 417-422. | Zbl 1090.76055
,[23] Numerical analysis of Eulerian multi-fluid models in the context of kinetic formulations for dilute evaporating sprays. To be submitted. | Numdam | Zbl pre05122981
,[24] Multi-fluid modeling of laminar poly-disperse spray flames: origin, assumptions and comparison of sectional and sampling methods. Combust. Theor. Model. 5 (2001) 537-572.
and ,[25] Eulerian multi-fluid modeling for the numerical simulation of coalescence in polydisperse dense liquid sprays. J. Comput. Phys. 194 (2004) 505-543. | Zbl 1100.76069
, and ,[26] Accurate treatment of size distribution effects in polydisperse spray diffusion flames: multi-fluid modelling, computations and experiments. Combust. Theor. Model. 8 (2004) 385-412.
, , , , and ,[27] Moment closure hierarchies for kinetics theories. J. Statist. Phys. 83 (1996) 1021-1065. | Zbl 1081.82619
,[28] On the behavior of the total variation in CWENO methods for conservation laws. Appl. Numer. Math. 33 (2000) 407-414. | Zbl 0964.65095
, and ,[29] Equation of motion of a small rigid sphere in a non-unifom flow. Phys. Fluids 26 (1983) 883-889. | Zbl 0538.76031
and ,[30] Collective drop effects on vaporizing liquid sprays. Ph.D. Thesis, Los Alamos national Laboratory, New Mexico 87545 (1981).
,[31] Measure solutions to the linear multi-dimensional transport equation with non-smooth coefficients. Comm. P.D.E 22 (1997) 337-358. | Zbl 0882.35026
and ,[32] Population balances: Theory and applications to particulate systems in engineering. Academic Press (2000).
and ,[33] Euler-Lagrange calculations of turbulent sprays: the effect of droplet collisions and coalescence. Atomization Spray 10 (2000).
, , and ,[34] Modélisation numérique des écoulements turbulents diphasiques à inclusions dispersées. École de Printemps de Mécanique des Fluides numériques, Aussois (1991).
,[35] Continuum modeling of dispersed two-phase flows. Combustion and turbulence in two-phase flows. Lecture Series 1996-02, Von Karman Inst. for fluid dyn. (1996).
,[36] On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5 (1968) 507-517. | Zbl 0184.38503
,[37] A Lagrangian sectional approach for simulating droplet size distribution of vaporizing fuel sprays in a turbulent jet. Combustion Flame 60 (1985) 15-28.
,[38] A second-order sequel to Godunov's method. J. Comput. Phys. 32 (1979) 101-136.
,[39] Spray combustion and atomization. Phys. Fluids 1 (1958) 541-555. | Zbl 0086.41102
,[40] Combustion Theory. Addison-Wesley Publishing (1985).
,[41] Bivariate extension of the quadrature method of moments for modeling simultaneous coagulation and sintering of particle populations. J. Colloid Interf. Sci. 236 (2001) 242-251.
, and ,