Finite element approximation for degenerate parabolic equations is considered. We propose a semidiscrete scheme provided with order-preserving and contraction properties, making use of piecewise linear trial functions and the lumping mass technique. Those properties allow us to apply nonlinear semigroup theory, and the wellposedness and stability in and , respectively, of the scheme are established. Under certain hypotheses on the data, we also derive convergence without any convergence rate. The validity of theoretical results is confirmed by numerical examples.
@article{M2AN_2005__39_4_755_0, author = {Mizutani, Akira and Saito, Norikazu and Suzuki, Takashi}, title = {Finite element approximation for degenerate parabolic equations. An application of nonlinear semigroup theory}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {39}, year = {2005}, pages = {755-780}, doi = {10.1051/m2an:2005033}, mrnumber = {2165678}, zbl = {1078.35009}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2005__39_4_755_0} }
Mizutani, Akira; Saito, Norikazu; Suzuki, Takashi. Finite element approximation for degenerate parabolic equations. An application of nonlinear semigroup theory. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 39 (2005) pp. 755-780. doi : 10.1051/m2an:2005033. http://gdmltest.u-ga.fr/item/M2AN_2005__39_4_755_0/
[1] Sobolev Spaces. Academic Press, New York, London (1975). | MR 450957 | Zbl 0314.46030
,[2] Some existence and dependence results for semilinear elliptic equations under nonlinear boundary conditions. Appl. Math. Optim. 17 (1988) 203-224. | Zbl 0652.35043
, and ,[3] A numerical method for solving the problem . RAIRO Anal. Numer. 13 (1979) 297-312. | Numdam | Zbl 0426.65052
, and ,[4] The Mathematical Theory of Finite Element Methods. Springer (1994). | MR 1278258 | Zbl 0804.65101
and ,[5] Convergence and approximation of semigroups of nonlinear operators in Banach spaces. J. Funct. Anal. 9 (1972) 63-74. | Zbl 0231.47036
and ,[6] Semi-linear second-order elliptic equations in . J. Math. Soc. Japan 25 (1973) 565-590. | Zbl 0278.35041
and ,[7] The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1978). | MR 520174 | Zbl 0383.65058
,[8] Basic Error Estimates for Elliptic Problems, in Finite Element Methods (Part 1), P.G. Ciarlet and J.L. Lions Eds., Handbook of Numerical Analysis, 17-351, Elsevier Science Publishers B.V., Amsterdam (1991). | Zbl 0875.65086
,[9] Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Engrg. 2 (1973) 17-31. | Zbl 0251.65069
and ,[10] Analyse numérique d'un problème de Stefan à deux phases par une méthode d'éléments finis. SIAM J. Numer. Anal. 12 (1975) 464-487. | Zbl 0272.65101
,[11] Continuous dependence on the nonlinearities of solutions of degenerate parabolic equations. J. Differential Equations 151 (1999) 231-251. | Zbl 0921.35017
and ,[12] Generation of semi-groups of nonlinear transformations on general Banach spaces. Amer. J. Math. 93 (1971) 265-293. | Zbl 0226.47038
and ,[13] Error analysis of the enthalpy method for the Stefan problem. IMA J. Numer. Anal. 7 (1987) 61-71. | Zbl 0638.65088
,[14] Weak and Variational Methods for Moving Boundary Problems. Pitman, Boston. Res. Notes Math. 59 (1982). | MR 650455 | Zbl 0476.35080
and ,[15] Variational Principles and Free-Boundary Problems. Wiley, New York (1982). | MR 679313 | Zbl 0564.49002
,[16] Some remarks on finite element analysis of time-dependent field problems, in Theory and Practice in Finite Element Structural Analysis, University of Tokyo Press, Tokyo (1973) 91-106. | Zbl 0373.65047
,[17] Operator Theory and Numerical Methods. North-Holland, Amsterdam (2001). | MR 1854280 | Zbl 0976.65098
, and ,[18] On a class of similarity solutions of the porous media equation. J. Math. Anal. Appl. 55 (1976) 351-364. | Zbl 0356.35049
and ,[19] Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985). | MR 775683 | Zbl 0695.35060
,[20] Solution of doubly nonlinear and degenerate parabolic problems by relaxation schemes. RAIRO Modél. Math. Anal. Numér. 29 (1995) 605-627. | Numdam | Zbl 0837.65103
and ,[21] Solution of nonlinear diffusion problems by linear approximation schemes. SIAM J. Numer. Anal. 30 1703-1722 (1993). | MR 1249039 | Zbl 0792.65070
, and ,[22] Schrödinger operators with singular potentials. Israel J. Math. 13 (1972) 135-148. | Zbl 0246.35025
,[23] Semi-discretization in time for a fast diffusion equation. J. Math. Anal. Appl. 137 (1989) 354-370. | Zbl 0693.65085
,[24] Numerical solution of a fast diffusion equation. Math. Comp. 68 (1999) 461-485. | Zbl 1020.65053
and ,[25] Error estimates for a nonlinear degenerate parabolic equation. Math. Comp. 59 (1992) 339-358. | Zbl 0767.65071
and ,[26] Energy error estimates for a linear scheme to approximate nonlinear parabolic problems. RAIRO Modél. Math. Anal. Numér. 21 (1987) 655-678. | Numdam | Zbl 0635.65123
, and ,[27] Semigroup approach to the Stefan problem with non-linear flux. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 75 (1983) 24-33. | Zbl 0562.35089
, and ,[28] Theoretical and numerical results on the two-phase Stefan problem. SIAM J. Numer. Anal. 26 (1989) 1425-1438. | Zbl 0738.65092
, , and ,[29] Nonlinear Semigroups. Amer. Math. Soc. Colloq. Publ. (1992). | Zbl 0766.47039
,[30] Error estimates for two-phase Stefan problems in several space variables. I. Linear boundary conditions. Calcolo 22 (1985) 457-499. | Zbl 0606.65084
,[31] Approximation of degenerate parabolic problems using numerical integration. SIAM J. Numer. Anal. 25 (1988) 784-814. | Zbl 0655.65131
, and ,[32] The porous media equation, in Applications of Nonlinear Analysis in the Physical Sciences (Bielefeld, 1979), Surveys Reference Works Math., 6, Pitman, Boston, Mass.-London (1981) 229-241. | Zbl 0497.76083
,[33] Some optimal error estimates for piecewise linear finite element approximation. Math. Comp. 38 (1982) 437-445. | Zbl 0483.65007
and ,[34] Numerical methods for flows through porous media, I. Math. Comp. 40 (1983) 435-467. | Zbl 0518.76078
,[35] Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483-493. | Zbl 0696.65007
and ,[36] An enthalpy formulation of the Stefan problem. SIAM J. Numer. Anal. 19 (1982) 1129-1157. | Zbl 0501.65058
,