We present and analyze an interior penalty method for the numerical discretization of the indefinite time-harmonic Maxwell equations in mixed form. The method is based on the mixed discretization of the curl-curl operator developed in [Houston et al., J. Sci. Comp. 22 (2005) 325-356] and can be understood as a non-stabilized variant of the approach proposed in [Perugia et al., Comput. Methods Appl. Mech. Engrg. 191 (2002) 4675-4697]. We show the well-posedness of this approach and derive optimal a priori error estimates in the energy-norm as well as the -norm. The theoretical results are confirmed in a series of numerical experiments.
@article{M2AN_2005__39_4_727_0, author = {Houston, Paul and Perugia, Ilaria and Schneebeli, Anna and Sch\"otzau, Dominik}, title = {Mixed discontinuous Galerkin approximation of the Maxwell operator : the indefinite case}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {39}, year = {2005}, pages = {727-753}, doi = {10.1051/m2an:2005032}, mrnumber = {2165677}, zbl = {1087.65106}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2005__39_4_727_0} }
Houston, Paul; Perugia, Ilaria; Schneebeli, Anna; Schötzau, Dominik. Mixed discontinuous Galerkin approximation of the Maxwell operator : the indefinite case. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 39 (2005) pp. 727-753. doi : 10.1051/m2an:2005032. http://gdmltest.u-ga.fr/item/M2AN_2005__39_4_727_0/
[1] Hierarchic -edge element families for Maxwell’s equations on hybrid quadrilateral/triangular meshes. Comput. Methods Appl. Mech. Engrg. 190 (2001) 6709-6733. | Zbl 0991.78031
and ,[2] Vector potentials in three-dimensional non-smooth domains. Math. Models Appl. Sci. 21 (1998) 823-864. | Zbl 0914.35094
, , and ,[3] Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2001) 1749-1779. | Zbl 1008.65080
, , and ,[4] Edge finite elements for the approximation of Maxwell resolvent operator. ESAIM: M2AN 36 (2002) 293-305. | Numdam | Zbl 1042.65087
and ,[5] The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics 15, Springer-Verlag, New York (1994). | MR 1278258 | Zbl 0804.65101
and ,[6] Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients. SIAM J. Numer. Anal. 37 (2000) 1542-1570. | Zbl 0964.78017
, and ,[7] The finite element method for elliptic problems. North-Holland, Amsterdam (1978). | Zbl 0383.65058
,[8] Modeling of electromagnetic absorption/scattering problems using -adaptive finite elements. Comput. Methods Appl. Mech. Engrg. 152 (1998) 103-124. | Zbl 0994.78011
and ,[9] Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Models Methods Appl. Sci. 7 (1997) 957-991. | Zbl 0910.35123
and ,[10] Finite elements in computational electromagnetism. Acta Numerica 11 (2002) 237-339. | Zbl 1123.78320
,[11] -DGFEM for Maxwell’s equations, in Numerical Mathematics and Advanced Applications ENUMATH 2001, F. Brezzi, A. Buffa, S. Corsaro, and A. Murli, Eds., Springer-Verlag (2003) 785-794. | Zbl 1061.78012
, and ,[12] Mixed discontinuous Galerkin approximation of the Maxwell operator. SIAM J. Numer. Anal. 42 (2004) 434-459. | Zbl 1084.65115
, and ,[13] Mixed discontinuous Galerkin approximation of the Maxwell operator: Non-stabilized formulation. J. Sci. Comput. 22 (2005) 325-356. | Zbl 1091.78017
, and ,[14] Interior penalty method for the indefinite time-harmonic Maxwell equations. Numer. Math. 100 (2005) 485-518. | Zbl 1071.65155
, , and ,[15] A posteriori error estimation for a discontinuous Galerkin approximation of second order elliptic problems. SIAM J. Numer. Anal. 41 (2003) 2374-2399. | Zbl 1058.65120
and ,[16] Problèmes aux Limites Non-Homogènes et Applications. Dunod, Paris (1968). | Zbl 0165.10801
and ,[17] A finite element method for approximating the time-harmonic Maxwell equations. Numer. Math. 63 (1992) 243-261. | Zbl 0757.65126
,[18] Finite element methods for Maxwell's equations. Oxford University Press, New York (2003). | Zbl 1024.78009
,[19] A simple proof of convergence for an edge element discretization of Maxwell's equations, in Computational electromagnetics, C. Carstensen, S. Funken, W. Hackbusch, R. Hoppe and P. Monk, Eds., Springer-Verlag, Lect. Notes Comput. Sci. Engrg. 28 (2003) 127-141. | Zbl 1031.65122
,[20] A new family of mixed finite elements in . Numer. Math. 50 (1986) 57-81. | Zbl 0625.65107
,[21] The -local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations. Math. Comput. 72 (2003) 1179-1214. | Zbl 1084.78007
and ,[22] Stabilized interior penalty methods for the time-harmonic Maxwell equations. Comput. Methods Appl. Mech. Engrg. 191 (2002) 4675-4697. | Zbl 1040.78011
, and ,[23] An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comp. 28 (1974) 959-962. | Zbl 0321.65059
,[24] -adaptive finite elements in electromagnetics. Comput. Methods Appl. Mech. Engrg. 169 (1999) 331-344. | Zbl 0956.78013
and ,