A numerical study of non-cavitating and cavitating liquid flow around a hydrofoil
Beux, François ; Salvetti, Maria-Vittoria ; Ignatyev, Alexey ; Li, Ding ; Merkle, Charles ; Sinibaldi, Edoardo
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 39 (2005), p. 577-590 / Harvested from Numdam

The results of a workshop concerning the numerical simulation of the liquid flow around a hydrofoil in non-cavitating and cavitating conditions are presented. This workshop was part of the conference “Mathematical and Numerical aspects of Low Mach Number Flows” (2004) and was aimed to investigate the capabilities of different compressible flow solvers for the low Mach number regime and for flows in which incompressible and supersonic regions are simultaneously present. Different physical models of cavitating phenomena are also compared. The numerical results are validated against experimental data.

Publié le : 2005-01-01
DOI : https://doi.org/10.1051/m2an:2005023
Classification:  65M99,  76B10,  76G25,  76T05
@article{M2AN_2005__39_3_577_0,
     author = {Beux, Fran\c cois and Salvetti, Maria-Vittoria and Ignatyev, Alexey and Li, Ding and Merkle, Charles and Sinibaldi, Edoardo},
     title = {A numerical study of non-cavitating and cavitating liquid flow around a hydrofoil},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {39},
     year = {2005},
     pages = {577-590},
     doi = {10.1051/m2an:2005023},
     mrnumber = {2157151},
     zbl = {1130.76019},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2005__39_3_577_0}
}
Beux, François; Salvetti, Maria-Vittoria; Ignatyev, Alexey; Li, Ding; Merkle, Charles; Sinibaldi, Edoardo. A numerical study of non-cavitating and cavitating liquid flow around a hydrofoil. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 39 (2005) pp. 577-590. doi : 10.1051/m2an:2005023. http://gdmltest.u-ga.fr/item/M2AN_2005__39_3_577_0/

[1] A. Baston, M. Lucchesini, L. Manfriani, L. Polito and G. Lombardi, Evaluation of pressure distributions on an aircraft by two different panel methods and comparison with experimental measurements, in 15th Int. Council of the Aeronautical Sciences Congress, London (1986) 618-628.

[2] L. D'Agostino, E. Rapposelli, C. Pascarella and A. Ciucci, A Modified Bubbly Isenthalpic Model for Numerical Simulation of Cavitating Flows, in 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT, USA, July 8-11 (2001).

[3] M. Deshpande, J. Feng and C. Merkle, Navier-Stokes analysis of 2-D cavity flows. ASME Cavitation and Multiphase Flow Forum, FED-153 (1993) 149-155.

[4] P. Glaister, A Riemann Solver for barotropic flow. J. Comput. Phys. 93 (1991) 477-480. | Zbl 0850.76390

[5] H. Guillard and C. Viozat, On the behaviour of upwind schemes in the low Mach number limit. Comput. Fluids 28 (1999) 63-86. | Zbl 0963.76062

[6] G. Jiang and C. Shu, Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126 (1996) 202-228. | Zbl 0877.65065

[7] D. Li and C. Merkle, Application of a general structured-unstructured solver to flows of arbitrary fluids, in First International Conference on Computational Fluid Dynamics, Kyoto, Japan, July 10-14 (2000).

[8] D. Li, G. Xia and C. Merkle, Analysis of real fluid flows in converging diverging nozzles. AIAA Paper 2003-4132 (2003), submitted.

[9] D. Li, S. Venkateswaran, K. Fakhari and C. Merkle, Convergence assessment of general fluid equations on unstructured hybrid grids. AIAA Paper 2001-2557 (2001).

[10] S. Pandya, S. Venkateswaran and T. Pulliam, Implementation of preconditioned dual-time procedures in OVERFLOW. AIAA Paper 2003-0072 (2003).

[11] E. Rapposelli, A. Cervone, C. Bramanti and L. D'Agostino, Thermal cavitation experiments on a NACA 0015 hydrofoil, in Proc. of FEDSM'03 4th ASME/JSME Joint Fluids Engineering conference, Honolulu, Hawaii, USA, July 6-11 (2003).

[12] P.L. Roe, Approximate Riemann solvers, parameters vectors, and difference schemes. J. Comput. Phys. 43 (1981) 357-372. | Zbl 0474.65066

[13] E. Sinibaldi, F. Beux and M.V. Salvetti, A preconditioned implicit Roe's scheme for barotropic flows: towards simulation of cavitation phenomena. INRIA research report No. 4891 (2003).

[14] E. Sinibaldi, F. Beux and M.V. Salvetti, A preconditioned compressible flow solver for numerical simulation of 3D cavitation phenomena, ECCOMAS 2004, 4th European Congress on Computational Methods in Applied Sciences and Engineering, Jyväskylä, Finland, July 24-28 (2004).

[15] E. Turkel, Preconditioned methods for solving the incompressible and low speed compressible equations. J. Comput. Phys. 72 (1987) 277-298. | Zbl 0633.76069

[16] S. Venkateswaran and C. Merkle, Analysis of preconditioning methods for Euler and Navier-Stokes equations1999).

[17] S. Venkateswaran, D. Li and C. Merkle, Influence of stagnation regions on preconditined solutions at low speeds. AIAA Paper 2003-0435 (2003).

[18] D.C. Wilcox, Turbulence Modeling for CFD. DCW Industries, Inc., ISBN 0-9636051-5-1 (1998).