The results of a workshop concerning the numerical simulation of the liquid flow around a hydrofoil in non-cavitating and cavitating conditions are presented. This workshop was part of the conference “Mathematical and Numerical aspects of Low Mach Number Flows” (2004) and was aimed to investigate the capabilities of different compressible flow solvers for the low Mach number regime and for flows in which incompressible and supersonic regions are simultaneously present. Different physical models of cavitating phenomena are also compared. The numerical results are validated against experimental data.
@article{M2AN_2005__39_3_577_0, author = {Beux, Fran\c cois and Salvetti, Maria-Vittoria and Ignatyev, Alexey and Li, Ding and Merkle, Charles and Sinibaldi, Edoardo}, title = {A numerical study of non-cavitating and cavitating liquid flow around a hydrofoil}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {39}, year = {2005}, pages = {577-590}, doi = {10.1051/m2an:2005023}, mrnumber = {2157151}, zbl = {1130.76019}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2005__39_3_577_0} }
Beux, François; Salvetti, Maria-Vittoria; Ignatyev, Alexey; Li, Ding; Merkle, Charles; Sinibaldi, Edoardo. A numerical study of non-cavitating and cavitating liquid flow around a hydrofoil. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 39 (2005) pp. 577-590. doi : 10.1051/m2an:2005023. http://gdmltest.u-ga.fr/item/M2AN_2005__39_3_577_0/
[1] Evaluation of pressure distributions on an aircraft by two different panel methods and comparison with experimental measurements, in 15th Int. Council of the Aeronautical Sciences Congress, London (1986) 618-628.
, , , and ,[2] A Modified Bubbly Isenthalpic Model for Numerical Simulation of Cavitating Flows, in 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT, USA, July 8-11 (2001).
, , and ,[3] Navier-Stokes analysis of 2-D cavity flows. ASME Cavitation and Multiphase Flow Forum, FED-153 (1993) 149-155.
, and ,[4] A Riemann Solver for barotropic flow. J. Comput. Phys. 93 (1991) 477-480. | Zbl 0850.76390
,[5] On the behaviour of upwind schemes in the low Mach number limit. Comput. Fluids 28 (1999) 63-86. | Zbl 0963.76062
and ,[6] Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126 (1996) 202-228. | Zbl 0877.65065
and ,[7] Application of a general structured-unstructured solver to flows of arbitrary fluids, in First International Conference on Computational Fluid Dynamics, Kyoto, Japan, July 10-14 (2000).
and ,[8] Analysis of real fluid flows in converging diverging nozzles. AIAA Paper 2003-4132 (2003), submitted.
, and ,[9] Convergence assessment of general fluid equations on unstructured hybrid grids. AIAA Paper 2001-2557 (2001).
, , and ,[10] Implementation of preconditioned dual-time procedures in OVERFLOW. AIAA Paper 2003-0072 (2003).
, and ,[11] Thermal cavitation experiments on a NACA 0015 hydrofoil, in Proc. of FEDSM'03 4th ASME/JSME Joint Fluids Engineering conference, Honolulu, Hawaii, USA, July 6-11 (2003).
, , and ,[12] Approximate Riemann solvers, parameters vectors, and difference schemes. J. Comput. Phys. 43 (1981) 357-372. | Zbl 0474.65066
,[13] A preconditioned implicit Roe's scheme for barotropic flows: towards simulation of cavitation phenomena. INRIA research report No. 4891 (2003).
, and ,[14] A preconditioned compressible flow solver for numerical simulation of 3D cavitation phenomena, ECCOMAS 2004, 4th European Congress on Computational Methods in Applied Sciences and Engineering, Jyväskylä, Finland, July 24-28 (2004).
, and ,[15] Preconditioned methods for solving the incompressible and low speed compressible equations. J. Comput. Phys. 72 (1987) 277-298. | Zbl 0633.76069
,[16] Analysis of preconditioning methods for Euler and Navier-Stokes equations1999).
and ,[17] Influence of stagnation regions on preconditined solutions at low speeds. AIAA Paper 2003-0435 (2003).
, and ,[18] Turbulence Modeling for CFD. DCW Industries, Inc., ISBN 0-9636051-5-1 (1998).
,