The purpose of this work is to study an example of low Mach (Froude) number limit of compressible flows when the initial density (height) is almost equal to a function depending on . This allows us to connect the viscous shallow water equation and the viscous lake equations. More precisely, we study this asymptotic with well prepared data in a periodic domain looking at the influence of the variability of the depth. The result concerns weak solutions. In a second part, we discuss the general low Mach number limit for standard compressible flows given in P.-L. Lions’ book that means with constant viscosity coefficients.
@article{M2AN_2005__39_3_477_0, author = {Bresch, Didier and Gisclon, Marguerite and Lin, Chi-Kun}, title = {An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {39}, year = {2005}, pages = {477-486}, doi = {10.1051/m2an:2005026}, mrnumber = {2157146}, zbl = {1080.35065}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2005__39_3_477_0} }
Bresch, Didier; Gisclon, Marguerite; Lin, Chi-Kun. An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 39 (2005) pp. 477-486. doi : 10.1051/m2an:2005026. http://gdmltest.u-ga.fr/item/M2AN_2005__39_3_477_0/
[1] Incompressible limit of the non-isentropic Euler equations with solid wall boundary conditions. Submitted (2004). | Zbl 1101.35050
,[2] Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model. Comm. Math. Phys. 238 (2003) 211-223. | Zbl 1037.76012
and ,[3] Rotating fluids in a cylinder. Discrete Contin. Dynam. Systems Ser. A 11 (2004) 47-82. | Zbl 1138.76446
, and ,[4] On some compressible fluid models: Korteweg, lubrication and shallow water systems. Comm. Partial Differential Equations 28 (2003) 1009-1037. | Zbl 1106.76436
, and ,[5] Low Mach number limit of viscous polytropic flows: formal asymptotics in the periodic case. Stud. Appl. Math. 109 (2002) 125-148. | Zbl 1114.76347
, , and ,[6] Fluides légèrement compressibles et limite incompressible. Séminaire École Polytechnique (France), Exposé No. III (2000). | Numdam | MR 1860675 | Zbl 1061.35511
,[7] Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions. J. Math. Pures Appl. 78 (1999) 461-471. | Zbl 0992.35067
, , and ,[8] Résultats récents sur la limite incompressible. Séminaire Bourbaki (France), No. 926 (2003). | Numdam | MR 2167201 | Zbl pre02213913
,[9] Derivation of viscous Saint-Venant system for laminar Shallow water; Numerical results. Discrete Contin. Dynam. Systems Ser. B 1 (2001) 89-102. | Zbl 0997.76023
and ,[10] Oscillatory perturbations of the Navier-Stokes equations. J. Math. Pures Appl. 76 (1997) 477-498. | Zbl 0885.35090
,[11] A shallow water model with eddy viscosity for basins with varying bottom topography. Nonlinearity 14 (2001) 1493-1515. | Zbl 0999.76033
and ,[12] Global well-posedness for a models of shallow water in a basin with a varying bottom. Indiana Univ. Math. J. 45 (1996) 479-510. | Zbl 0953.76011
, and ,[13] Mathematical topics in fluid dynamics, Vol. 2, Compressible models. Oxford Science Publication, Oxford (1998). | MR 1637634 | Zbl 0908.76004
,[14] Incompressible limit for a viscous compressible fluids. J. Math. Pures Appl. 77 (1998) 585-627. | Zbl 0909.35101
and ,[15] The incompressible limit of the non-isentropic Euler equations. Arch. Rational Mech. Anal. 158 (2001) 61-90. | Zbl 0974.76072
and ,[16] The incompressible limit of the non-isentropic Euler equations, in Séminaire Équations aux Dérivées Partielles, École Polytechnique (2001). | MR 1834114
and ,[17] Justification of the shallow water limit for a rigid lid with bottom topography. Theor. Comp. Fluid Dyn. 9 (1997) 311-324. | Zbl 0907.76013
,[18] Geophysical fluid dynamics. Berlin Heidelberg-New York, Springer-Verlag (1987). | Zbl 0429.76001
,