An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit
Bresch, Didier ; Gisclon, Marguerite ; Lin, Chi-Kun
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 39 (2005), p. 477-486 / Harvested from Numdam

The purpose of this work is to study an example of low Mach (Froude) number limit of compressible flows when the initial density (height) is almost equal to a function depending on x. This allows us to connect the viscous shallow water equation and the viscous lake equations. More precisely, we study this asymptotic with well prepared data in a periodic domain looking at the influence of the variability of the depth. The result concerns weak solutions. In a second part, we discuss the general low Mach number limit for standard compressible flows given in P.-L. Lions’ book that means with constant viscosity coefficients.

Publié le : 2005-01-01
DOI : https://doi.org/10.1051/m2an:2005026
Classification:  35Q30
@article{M2AN_2005__39_3_477_0,
     author = {Bresch, Didier and Gisclon, Marguerite and Lin, Chi-Kun},
     title = {An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {39},
     year = {2005},
     pages = {477-486},
     doi = {10.1051/m2an:2005026},
     mrnumber = {2157146},
     zbl = {1080.35065},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2005__39_3_477_0}
}
Bresch, Didier; Gisclon, Marguerite; Lin, Chi-Kun. An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 39 (2005) pp. 477-486. doi : 10.1051/m2an:2005026. http://gdmltest.u-ga.fr/item/M2AN_2005__39_3_477_0/

[1] T. Alazard, Incompressible limit of the non-isentropic Euler equations with solid wall boundary conditions. Submitted (2004). | Zbl 1101.35050

[2] D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model. Comm. Math. Phys. 238 (2003) 211-223. | Zbl 1037.76012

[3] D. Bresch, B. Desjardins and D. Gérard-Varet, Rotating fluids in a cylinder. Discrete Contin. Dynam. Systems Ser. A 11 (2004) 47-82. | Zbl 1138.76446

[4] D. Bresch, B. Desjardins and C.-K. Lin, On some compressible fluid models: Korteweg, lubrication and shallow water systems. Comm. Partial Differential Equations 28 (2003) 1009-1037. | Zbl 1106.76436

[5] D. Bresch, B. Desjardins, E. Grenier and C.-K. Lin, Low Mach number limit of viscous polytropic flows: formal asymptotics in the periodic case. Stud. Appl. Math. 109 (2002) 125-148. | Zbl 1114.76347

[6] R. Danchin, Fluides légèrement compressibles et limite incompressible. Séminaire École Polytechnique (France), Exposé No. III (2000). | Numdam | MR 1860675 | Zbl 1061.35511

[7] B. Desjardins, E. Grenier, P.-L. Lions and N. Masmoudi, Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions. J. Math. Pures Appl. 78 (1999) 461-471. | Zbl 0992.35067

[8] I. Gallagher, Résultats récents sur la limite incompressible. Séminaire Bourbaki (France), No. 926 (2003). | Numdam | MR 2167201 | Zbl pre02213913

[9] J.F. Gerbeau and B. Perthame, Derivation of viscous Saint-Venant system for laminar Shallow water; Numerical results. Discrete Contin. Dynam. Systems Ser. B 1 (2001) 89-102. | Zbl 0997.76023

[10] E. Grenier, Oscillatory perturbations of the Navier-Stokes equations. J. Math. Pures Appl. 76 (1997) 477-498. | Zbl 0885.35090

[11] C.D. Levermore and M. Sammartino, A shallow water model with eddy viscosity for basins with varying bottom topography. Nonlinearity 14 (2001) 1493-1515. | Zbl 0999.76033

[12] C.D. Levermore, M. Oliver and E.S. Titi, Global well-posedness for a models of shallow water in a basin with a varying bottom. Indiana Univ. Math. J. 45 (1996) 479-510. | Zbl 0953.76011

[13] P.-L. Lions, Mathematical topics in fluid dynamics, Vol. 2, Compressible models. Oxford Science Publication, Oxford (1998). | MR 1637634 | Zbl 0908.76004

[14] P.-L. Lions and N. Masmoudi, Incompressible limit for a viscous compressible fluids. J. Math. Pures Appl. 77 (1998) 585-627. | Zbl 0909.35101

[15] G. Métivier and S. Schochet, The incompressible limit of the non-isentropic Euler equations. Arch. Rational Mech. Anal. 158 (2001) 61-90. | Zbl 0974.76072

[16] G. Métivier and S. Schochet, The incompressible limit of the non-isentropic Euler equations, in Séminaire Équations aux Dérivées Partielles, École Polytechnique (2001). | MR 1834114

[17] M. Oliver, Justification of the shallow water limit for a rigid lid with bottom topography. Theor. Comp. Fluid Dyn. 9 (1997) 311-324. | Zbl 0907.76013

[18] J. Pedlosky, Geophysical fluid dynamics. Berlin Heidelberg-New York, Springer-Verlag (1987). | Zbl 0429.76001