In this paper, the Babuška's theory of Lagrange multipliers is extended to higher order elliptic Dirichlet problems. The resulting variational formulation provides an efficient numerical squeme in meshless methods for the approximation of elliptic problems with essential boundary conditions.
@article{M2AN_2005__39_2_419_0, author = {Zuppa, Carlos}, title = {Lagrange multipliers for higher order elliptic operators}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {39}, year = {2005}, pages = {419-429}, doi = {10.1051/m2an:2005013}, mrnumber = {2143954}, zbl = {1078.65111}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2005__39_2_419_0} }
Zuppa, Carlos. Lagrange multipliers for higher order elliptic operators. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 39 (2005) pp. 419-429. doi : 10.1051/m2an:2005013. http://gdmltest.u-ga.fr/item/M2AN_2005__39_2_419_0/
[1] Lectures on elliptic boundary value problems. D. Van Nostrand, Princeton, N. J. (1965). | MR 178246 | Zbl 0142.37401
,[2] The finite element method with lagrange multipliers. Numer. Math. 20 (1973) 179-192. | Zbl 0258.65108
,[3] Survey lectures on the mathematical foundations of the finite element method, The Mathematical Foundations of the Finite Element Method with Application to Partial Differential Equations. Academic Press, New York (1972) 5-359. | Zbl 0268.65052
and ,[4] D. Organ, M. Fleming and P. Krysl, Meshless methods: an overview and recent development. Comput. Methods Appl. Mech. Engrg. 139 (1996a) 3-47. | Zbl 0891.73075
, .[5] Expansions in Eigenfunctions of Self-Adjoint Operators, Translations of Mathematical Monographs 17, American Mathematical Society, Providence, R.I. (1968). | MR 222718
,[6] The mathematical theory of finite elements methods. Springer-Verlag, New York (1994). | MR 1278258 | Zbl 0804.65101
and ,[7] H-p clouds - an h-p meshless method. Num. Methods Partial Differential Equations. 1 (1996) 1-34. | Zbl 0869.65069
and ,[8] Meshfree and particle methods and their applications. Applied Mechanics Reviews (ASME) (2001).
and ,[9] Problèmes aux limites non homogènes et applications. Dunod, Paris (1968). | Zbl 0165.10801
and ,[10] Mesh Free Methods: Moving Beyond the Finite Element Method. CRC Press, Boca Raton, USA (2002). | MR 1989981 | Zbl 1031.74001
,[11] Les méthodes directes en théorie des équations elliptiques. Masson, Paris (1967). | MR 227584
,[12] An introduction to the mathematical theory of finite elements. Wiley Interscience, New York (1976). | MR 461950 | Zbl 0336.35001
and ,[13] Inequalities for formally positive integro-differential forms. Bull. Amer. Math. Soc. 67 (1961) 368-370. | Zbl 0103.07602
,[14] Solvability of boundary value problems for general elliptic systems. Amer. Math. Soc. Transl. 67 (1968) 182-225. | Zbl 0177.37401
,[15] The h-p Clouds meshless method and lagrange multipliers for higher order elliptic operators. In preparation.
, and ,