This paper studies the exact controllability of a finite dimensional system obtained by discretizing in space and time the linear 1-D wave system with a boundary control at one extreme. It is known that usual schemes obtained with finite difference or finite element methods are not uniformly controllable with respect to the discretization parameters and . We introduce an implicit finite difference scheme which differs from the usual centered one by additional terms of order and . Using a discrete version of Ingham’s inequality for nonharmonic Fourier series and spectral properties of the scheme, we show that the associated control can be chosen uniformly bounded in and in such a way that it converges to the HUM control of the continuous wave, i.e. the minimal -norm control. The results are illustrated with several numerical experiments.
@article{M2AN_2005__39_2_377_0, author = {M\"unch, Arnaud}, title = {A uniformly controllable and implicit scheme for the 1-D wave equation}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {39}, year = {2005}, pages = {377-418}, doi = {10.1051/m2an:2005012}, mrnumber = {2143953}, zbl = {1130.93016}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2005__39_2_377_0} }
Münch, Arnaud. A uniformly controllable and implicit scheme for the 1-D wave equation. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 39 (2005) pp. 377-418. doi : 10.1051/m2an:2005012. http://gdmltest.u-ga.fr/item/M2AN_2005__39_2_377_0/
[1] Geometrical aspects of exact boundary controllability for the wave equation: a numerical study. COCV 3 (1998) 163-212. | Numdam | Zbl 1052.93501
and ,[2] Exponentially stable approximations of weakly damped wave equations. Ser. Num. Math., Birkhäuser 100 (1990) 1-33. | Zbl 0850.93719
, and ,[3] Numerical methods for the control of flexible structures. J. Struct. Control 8 (2001).
,[4] Boundary controllability of a semi-discrete linear 1-D wave equation with mixed finite elements. SIAM J. Numer. Anal., submitted.
and ,[5] Boundary controllability of a semi-discrete linear 2-D wave equation with mixed finite elements, submitted.
, and ,[6] Identification numérique de contrôles distribués pour l'équation des ondes. C.R. Acad. Sci. Paris Sér. I 322 (1996) 779-784. | Zbl 0847.65043
and ,[7] Higher-order Numerical Methods for Transient Wave Equations. Scientific Computation, Springer (2002). | MR 1870851 | Zbl 0985.65096
,[8] Ensuring well-posedness by analogy: Stokes problem and boundary control for the wave equation. J. Comput. Phys. 103 (1992) 189-221. | Zbl 0763.76042
,[9] A numerical approach to the exact boundary controllability of the wave equation (I). Dirichlet Controls: Description of the numerical methods. Japan J. Appl. Math. 7 (1990) 1-76. | Zbl 0699.65055
, and ,[10] A mixed finite element formulation for the boundary controllability of the wave equation. Int. J. Numer. Methods Engrg. 27 (1989) 623-636. | Zbl 0711.65084
, and ,[11] Matrix Computations. Johns Hopkins Press, Baltimore (1989). | MR 1002570 | Zbl 0733.65016
and ,[12] Boundary observability for the space-discretizations of the 1-D wave equation. ESAIM: M2AN 33 (1999) 407-438. | Numdam | Zbl 0947.65101
and ,[13] Some trigonometrical inequalities with applications to the theory of series. Math. Z. 41 (1936) 367-369. | Zbl 0014.21503
,[14] Exact controllability and Stabilization - The multiplier method. J. Wiley and Masson (1994). | MR 1359765 | Zbl 0937.93003
,[15] Dispersion-corrected explicit integration of the wave equation. Comp. Methods Appl. Mech. Engrg. 191 (2001) 975-987. | Zbl 1009.76054
,[16] Contrôlabilité exacte - Pertubations et stabilisation de systèmes distribués, Tome 1, Masson, Paris (1988). | Zbl 0653.93002
,[17] Uniform boundary controllability of a semi-discrete 1-D wave equation. Numer. Math. 91 (2002) 723-728. | Zbl 1002.65072
,[18] Family of implicit schemes uniformly controllable for the 1-D wave equation. C.R. Acad. Sci. Paris Sér. I 339 (2004) 733-738. | Zbl 1061.65054
,[19] Uniform stabilization of a numerical approximation of a locally damped wave equation. ESAIM: COCV, submitted. | Numdam | Zbl 1120.65101
and ,[20] Uniform boundary controllability of a discrete 1-D wave equation. Systems Control Lett. 48 (2003) 261-280. | Zbl 1157.93324 | Zbl pre05055499
and ,[21] Discrete Ingham inequalities and applications. C.R. Acad. Sci. Paris Sér. I 338 (2004) 281-286. | Zbl 1040.93030
and ,[22] Convergence of a multi-grid method for the controlabillity of the 1-D wave equation. C.R. Acad. Sci. Paris, Sér. I 338 (2004) 413-418. | Zbl 1038.65054
and ,[23] Introduction à l'analyse numérique des équations aux dérivées partielles. Masson, Paris (1983). | Zbl 0561.65069
and ,[24] Controllability and stabilization theory for linear partial differential equations: recent progress and open questions. SIAM Rev. 20 (1978) 639-737. | Zbl 0397.93001
,[25] Contrôle d'équations des ondes linéaires et quasilinéaires. Ph.D. Thesis Université de Paris VI (2000).
,[26] Boundary observability for finite-difference space semi-discretizations of the 2-D wave equation in the square. J. Math. Pures. Appl. 78 (1999) 523-563. | Zbl 0939.93016
,