In this paper, we are interested in the modelling and the finite element approximation of a petroleum reservoir, in axisymmetric form. The flow in the porous medium is governed by the Darcy-Forchheimer equation coupled with a rather exhaustive energy equation. The semi-discretized problem is put under a mixed variational formulation, whose approximation is achieved by means of conservative Raviart-Thomas elements for the fluxes and of piecewise constant elements for the pressure and the temperature. The discrete problem thus obtained is well-posed and a posteriori error estimates are also established. Numerical tests are presented validating the developed code.
@article{M2AN_2005__39_2_349_0, author = {Amara, Mohamed and Capatina-Papaghiuc, Daniela and Denel, Bertrand and Terpolilli, Peppino}, title = {Mixed finite element approximation for a coupled petroleum reservoir model}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {39}, year = {2005}, pages = {349-376}, doi = {10.1051/m2an:2005015}, mrnumber = {2143952}, zbl = {1130.76045}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2005__39_2_349_0} }
Amara, Mohamed; Capatina-Papaghiuc, Daniela; Denel, Bertrand; Terpolilli, Peppino. Mixed finite element approximation for a coupled petroleum reservoir model. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 39 (2005) pp. 349-376. doi : 10.1051/m2an:2005015. http://gdmltest.u-ga.fr/item/M2AN_2005__39_2_349_0/
[1] Modélisation des écoulements dans les réservoirs souterrains avec prise en compte des interactions puits/réservoir. Thèse de doctorat, Université de Saint-Etienne (1992).
,[2] Modelling, analysis and numerical approximation of flow with heat transfer in a petroleum reservoir, Preprint No. 0415, Université de Pau (2004) (http://lma.univ-pau.fr/publis/publis.php).
, , and ,[3] Well testing: Interpretation methods. Editions Technip, Paris (1998).
,[4] The mathematical theory of Finite Element Methods. Springer Verlag, New York (1994). | MR 1278258 | Zbl 0804.65101
and ,[5] Mixed and Hybrid Finite Element Methods. Springer Verlag, New York (1991). | MR 1115205 | Zbl 0788.73002
and ,[6] A unified physical presentation of mixed, mixed-hybrid finite elements and standard finite difference approximations for the determination of velocities in waterflow problems. Adv. Water Resources 14 (1991) 329-348.
and ,[7] The finite element method for elliptic problems error analysis. North Holland, Amsterdam (1978). | MR 520174 | Zbl 0383.65058
,[8] On the simulation of multicomponent gas flow in porous media. Appl. Numer. Math. 31 (1999) 405-427. | Zbl 0940.76033
, and ,[9] Elliptic problems on non-smooth domains. Pitman, Boston (1985). | Zbl 0695.35060
,[10] Mother: A model for interpreting thermometrics. SPE 28588 (1994).
, , , and ,[11] A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15 (1976) 59-64. | Zbl 0332.20008
and ,[12] Mixed and Hybrid Methods, in Handbook of Numerical Analysis Vol. II. North Holland, Amsterdam (1991) 523-639. | Zbl 0875.65090
and ,[13] A posteriori error estimator for the Raviart-Thomas element. SIAM J. Numer. Anal. 33 (1996) 2431-2444. | Zbl 0866.65071
and ,