A posteriori error estimates for a nonconforming finite element discretization of the heat equation
Nicaise, Serge ; Soualem, Nadir
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 39 (2005), p. 319-348 / Harvested from Numdam

The paper presents an a posteriori error estimator for a (piecewise linear) nonconforming finite element approximation of the heat equation in d , d=2 or 3, using backward Euler’s scheme. For this discretization, we derive a residual indicator, which use a spatial residual indicator based on the jumps of normal and tangential derivatives of the nonconforming approximation and a time residual indicator based on the jump of broken gradients at each time step. Lower and upper bounds form the main results with minimal assumptions on the mesh. Numerical experiments and a space-time adaptive algorithm confirm the theoretical predictions.

Publié le : 2005-01-01
DOI : https://doi.org/10.1051/m2an:2005009
Classification:  65N15,  65N30,  65M50
@article{M2AN_2005__39_2_319_0,
     author = {Nicaise, Serge and Soualem, Nadir},
     title = {A posteriori error estimates for a nonconforming finite element discretization of the heat equation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {39},
     year = {2005},
     pages = {319-348},
     doi = {10.1051/m2an:2005009},
     mrnumber = {2143951},
     zbl = {1078.65079},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2005__39_2_319_0}
}
Nicaise, Serge; Soualem, Nadir. A posteriori error estimates for a nonconforming finite element discretization of the heat equation. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 39 (2005) pp. 319-348. doi : 10.1051/m2an:2005009. http://gdmltest.u-ga.fr/item/M2AN_2005__39_2_319_0/

[1] Y. Achdou, C. Bernardi and F. Coquel, A priori and a posteriori error analysis of finite volume discretizations of Darcy's equations. Numer. Math. 96 (2003) 17-42. | Zbl 1050.76035

[2] G. Acosta and R.G. Durán, The maximum angle condition for mixed and non-conforming elements, Application to the Stokes equations. SIAM J. Numer. Anal. 37 (1999) 18-36. | Zbl 0948.65115

[3] T. Apel, Anisotropic finite elements: Local estimates and applications. Adv. Numer. Math. Teubner, Stuttgart (1999). | MR 1716824 | Zbl 0934.65121

[4] T. Apel and S. Nicaise, The inf-sup condition for some low order elements on anisotropic meshes. Calcolo 41 (2004) 89-113. | Zbl 1108.65117

[5] T. Apel, S. Nicaise and J. Schröberl, A non-conforming finite element method with anisotropic mesh grading for the stokes problem in domains with edges. IMA J. Numer. Anal. 21 (2001) 843-856. | Zbl 0998.65116

[6] A. Bergam, C. Bernardi and Z. Mghazli, A posteriori analysis of the finite element discretization of some parabolic problem. Preprint Laboratoire J.-L. Lions 01045, Université Paris 6 (2001). | Zbl 1072.65124

[7] A. Bergam, C. Bernardi and Z. Mghazli, A posteriori analysis of the finite element discretization of a nonlinear parabolic equation. (2004) (to appear).

[8] C. Bernardi and B. Métivet, Indicateurs d'erreur pour l'équation de la chaleur. Rev. Européenne Élém. Finis 9 (2000) 425-438. | Zbl 0959.65106

[9] C. Bernardi and R. Verfürth, A posteriori error analysis of the fully discretized time-dependent Stokes equations. ESAIM: M2AN 38 (2004) 437-455. | Numdam | Zbl 1079.76042

[10] P. Brenner, M. Crouzeix and V. Thomée, Single step methods for inhomogeneous linear differential equations in banach space. RAIRO Anal. Numér. 16 (1982) 5-26. | Numdam | Zbl 0477.65040

[11] P. Ciarlet, The finite element method for elliptic problems. North Holland (1996). | MR 520174 | Zbl 0383.65058

[12] P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 2 (1975) 77-84. | Numdam | Zbl 0368.65008

[13] E. Creusé, G. Kunert and S. Nicaise, A posteriori error estimation for the Stokes problem: Anisotropic and isotropic discretizations. Math. Models Methods Appl. Sci. 14 (2004) 1297-1341. | Zbl 1071.65142

[14] E. Dari, R. Durán, C. Padra and V. Vampa, A posteriori error estimators for nonconforming finite element methods. RAIRO Modél. Math. Anal. Numér. 30 (1996) 385-400. | Numdam | Zbl 0853.65110

[15] V. Girault and P.-A. Raviart, Finite elements methods for Navier-Stokes equations, Theory and Algorithms. Springer Series in Computational Mathematics, Berlin (1986). | Zbl 0585.65077

[16] C. Johnson, Y.-Y. Nie and V. Thomée, An a posteriori error estimate and adaptive timestep control for a backward Euler discretization of a parabolic problem. SIAM J. Numer. Anal. 27 (1990) 277-291. | Zbl 0701.65063

[17] M. Picasso, Adaptive finite elements for a linear parabolic problem. Comput. Methods Appl. Mech. Engrg. 167 (1998) 223-237. | Zbl 0935.65105

[18] M. Picasso, An anisotropic error indicator based on Zienkiewicz-Zhu error estimator: Application to elliptic and parabolic problems. SIAM J. Sci. Comput. 24 (2003) 1328-1355. | Zbl 1061.65116

[19] L.R. Scott and S. Zhang, Finite element interpolation of non-smooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483-493. | Zbl 0696.65007

[20] R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley-Teubner, Chichester, Stuttgart (1996). | Zbl 0853.65108

[21] R. Verfürth, Error estimates for some quasi-interpolation operators. ESAIM: M2AN 33 (1999) 695-713. | Numdam | Zbl 0938.65125

[22] R. Verfürth, A posteriori error estimates for finite element discretization of the heat equation. Calcolo 40 (2003) 195-212. | Zbl 1168.65418 | Zbl pre02216993