We study a time-delay regularization of the anisotropic diffusion model for image denoising of Perona and Malik [IEEE Trans. Pattern Anal. Mach. Intell 12 (1990) 629-639], which has been proposed by Nitzberg and Shiota [IEEE Trans. Pattern Anal. Mach. Intell 14 (1998) 826-835]. In the two-dimensional case, we show the convergence of a numerical approximation and the existence of a weak solution. Finally, we show some experiments on images.
@article{M2AN_2005__39_2_231_0, author = {Belahmidi, Abdelmounim and Chambolle, Antonin}, title = {Time-delay regularization of anisotropic diffusion and image processing}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {39}, year = {2005}, pages = {231-251}, doi = {10.1051/m2an:2005010}, mrnumber = {2143948}, zbl = {1101.68102}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2005__39_2_231_0} }
Belahmidi, Abdelmounim; Chambolle, Antonin. Time-delay regularization of anisotropic diffusion and image processing. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 39 (2005) pp. 231-251. doi : 10.1051/m2an:2005010. http://gdmltest.u-ga.fr/item/M2AN_2005__39_2_231_0/
[1] Axioms and fundamental equations of image processing. Arch. Rational Mech. Anal. 123 (1993) 199-257. | Zbl 0788.68153
, , and ,[2] Équations aux dérivées partielles appliquées à la restauration et à l'agrandissement des images. Ph.D. thesis, CEREMADE, Université de Paris-Dauphine, Paris (2003). Available at http://tel.ccsd.cnrs.fr.
,[3] A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8 (1986) 679-698.
,[4] Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29 (1992) 182-193. | Zbl 0746.65091
, , and ,[5] Introduction à l'analyse numérique matricielle et à l'optimisation. Collection Mathématiques Appliquées pour la Maîtrise. Masson, Paris (1982). | Zbl 0488.65001
,[6] A volterra type model for image processing. IEEE Trans. Image Process. 7 (1998) 292-303.
and ,[7] | Zbl 1031.68133
ḡlu, An analysis of the Perona-Malik scheme. Comm. Pure Appl. Math. 54 (2001) 1442-1487.[8] Motion of hypersurfaces and geometric equations. J. Math. Soc. Japan 44 (1992) 99-111. | Zbl 0739.53005
and ,[9] Elliptic partial differential equations of second order. Classics in Mathematics. Springer-Verlag, Berlin (2001). Reprint of the 1998 edition. | MR 1814364 | Zbl 1042.35002
and ,[10] An elementary analytic theory of the degree of mapping in -dimensional space. J. Math. Mech. 8 (1959) 231-247. | Zbl 0085.17105
,[11] A diffusion equation with a nonmonotone constitutive function, in Systems of nonlinear partial differential equations (Oxford, 1982), Reidel, Dordrecht. NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci. 111 (1983) 409-422. | Zbl 0531.35045
and ,[12] Introduction à la théorie des points critiques et applications aux problèmes elliptiques, volume 13 of Mathématiques & Applications (Berlin). Springer-Verlag, Paris (1993). | MR 1276944 | Zbl 0797.58005
,[13] Maximum and comparison principle for one-dimensional anisotropic diffusion. Math. Ann. 311 (1998) 107-123. | Zbl 0909.35025
and ,[14] The Perona-Malik paradox. SIAM J. Appl. Math. 57 (1997) 1328-1342. | Zbl 0887.35071
,[15] Theory of edge detection. Proc. Roy. Soc. London B. 207 (1980) 187-217.
and ,[16] An e-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Scuola Norm. Sup. Pisa 17 (1963) 189-206. | Numdam | Zbl 0127.31904
,[17] Nonlinear image filtering with edge and corner enhancement. IEEE Trans. Pattern Anal. Mach. Intell. 14 (1992) 826-833.
and ,[18] Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12 (1990) 629-639.
and ,[19] A multi-scale approach to nonuniform diffusion. CVGIP: Image Underst. 57 (1993) 99-110.
and ,[20] Behavioral analysis of anisotropic diffusion in image processing. IEEE Trans. Image Process. 5 (1996) 1539-1553.
, , and ,