Coupling Darcy and Stokes equations for porous media with cracks
Bernardi, Christine ; Hecht, Frédéric ; Pironneau, Olivier
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 39 (2005), p. 7-35 / Harvested from Numdam

In order to handle the flow of a viscous incompressible fluid in a porous medium with cracks, the thickness of which cannot be neglected, we consider a model which couples the Darcy equations in the medium with the Stokes equations in the cracks by a new boundary condition at the interface, namely the continuity of the pressure. We prove that this model admits a unique solution and propose a mixed formulation of it. Relying on this formulation, we describe a finite element discretization and derive a priori and a posteriori error estimates. We present some numerical experiments that are in good agreement with the analysis.

Publié le : 2005-01-01
DOI : https://doi.org/10.1051/m2an:2005007
Classification:  65N30,  65N50,  76D07,  76S05
@article{M2AN_2005__39_1_7_0,
     author = {Bernardi, Christine and Hecht, Fr\'ed\'eric and Pironneau, Olivier},
     title = {Coupling Darcy and Stokes equations for porous media with cracks},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {39},
     year = {2005},
     pages = {7-35},
     doi = {10.1051/m2an:2005007},
     mrnumber = {2136198},
     zbl = {1079.76041},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2005__39_1_7_0}
}
Bernardi, Christine; Hecht, Frédéric; Pironneau, Olivier. Coupling Darcy and Stokes equations for porous media with cracks. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 39 (2005) pp. 7-35. doi : 10.1051/m2an:2005007. http://gdmltest.u-ga.fr/item/M2AN_2005__39_1_7_0/

[1] Y. Achdou, C. Bernardi and F. Coquel, A priori and a posteriori analysis of finite volume discretizations of Darcy's equations. Numer. Math. 96 (2003) 17-42. | Zbl 1050.76035

[2] M. Amara, D. Capatina-Papaghiuc, E. Chacón-Vera and D. Trujillo, Vorticity-velocity-pressure formulation for Navier-Stokes equations. Comput. Vis. Sci. 6 (2004) 47-52. | Zbl 1299.76059 | Zbl pre02132407

[3] C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional nonsmooth domains. Math. Meth. Appl. Sci. 21 (1998) 823-864. | Zbl 0914.35094

[4] C. Bègue, C. Conca, F. Murat and O. Pironneau, Les équations de Stokes et de Navier-Stokes avec des conditions aux limites sur la pression. Nonlinear Partial Differ. Equ. Appl., Collège de France Seminar IX (1988) 179-264. | Zbl 0687.35069

[5] C. Bernardi, C. Canuto and Y. Maday, Un problème variationnel abstrait. Application d'une méthode de collocation pour les équations de Stokes. C.R. Acad. Sci. Paris série I 303 (1986) 971-974. | Zbl 0612.49004

[6] C. Bernardi, C. Canuto and Y. Maday, Generalized inf-sup condition for Chebyshev spectral approximation of the Stokes problem. SIAM J. Numer. Anal. 25 (1988) 1237-1271. | Zbl 0666.76055

[7] S. Bertoluzza and V. Perrier, The mortar method in the wavelet context. ESAIM: M2AN 35 (2001) 647-673. | Numdam | Zbl 0995.65131

[8] D. Braess and R. Verfürth, A posteriori error estimators for the Raviart-Thomas element. SIAM J. Numer. Anal. 33 (1996) 2431-2444. | Zbl 0866.65071

[9] D.-G. Calugaru, Modélisation et simulation numérique du transport de radon dans un milieu poreux fissuré ou fracturé. Problème direct et problèmes inverses comme outils d'aide à la prédiction sismique, Thesis, Université de Franche-Comté, Besançon (2002).

[10] M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Anal. Numér. 7 (1973) 33-76. | Numdam | Zbl 0302.65087

[11] M. Discacciati, E. Miglio and A. Quarteroni, Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43 (2002) 57-74. | Zbl 1023.76048

[12] M. Discacciati and A. Quarteroni, Analysis of a domain decomposition method for the coupling of Stokes and Darcy equations, in Proc. of ENUMATH, F. Brezzi Ed., Springer-Verlag (to appear). | MR 2360703 | Zbl pre02064881

[13] M. Discacciati and A. Quarteroni, Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations. Comput. Vis. Sci. 6 (2004) 93-104. | Zbl pre02132413

[14] F. Dubois, Vorticity-velocity-pressure formulation for the Stokes problem. Math. Meth. Appl. Sci. 25 (2002) 1091-1119. | Zbl 1099.76049

[15] F. Dubois, M. Salaün and S. Salmon, First vorticity-velocity-pressure scheme for the Stokes problem, Internal Report 356, Institut Aérotechnique, Conservatoire National des Arts et Métiers, France (2002) (submitted).

[16] P.J. Frey and P.-L. George, Maillages, applications aux éléments finis. Hermès, Paris (1999).

[17] P.-L. George and F. Hecht, Nonisotropic grids. Handbook of Grid Generation, J.F. Thompson, B.K. Soni & N.P. Weatherhill Eds., CRC Press (1998).

[18] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag (1986). | Zbl 0585.65077

[19] F. Hecht, Construction d’une base de fonctions P 1 non conforme à divergence nulle dans 3 . RAIRO Anal. Numér. 15 (1981) 119-150. | Numdam | Zbl 0471.76028

[20] F. Hecht and O. Pironneau, FreeFem++, see www.freefem.org.

[21] H. Kawarada, E. Baba and H. Suito, Effects of spilled oil on coastal ecosystems, in the Proceedings of European Congress on Computational Methods in Applied Sciences and Engineering 2000, CD-ROM proceedings (2001).

[22] H. Kawarada, E. Baba and H. Suito, Effects of wave breaking action on flows in tidal-flats, in Computational Fluid Dynamics for the 21st Century, M. Hafez, K. Morinishi and J. Périaux Eds., Springer. Notes on Numerical Fluid Mechanics 78 (2001) 275-289.

[23] W.J. Layton, F. Schieweck and I. Yotov, Coupling fluid flow with porous media flow 22-01 (2001). | MR 1974181 | Zbl 1037.76014

[24] J.-C. Nedelec, Mixed finite elements in 3 . Numer. Math. 35 (1980) 315-341. | Zbl 0419.65069

[25] R.A. Nicolaides, Existence, uniqueness and approximation for generalized saddle point problems. SIAM J. Numer. Anal. 19 (1982) 349-357. | Zbl 0485.65049

[26] P.-A. Raviart and J.-M. Thomas, A mixed finite element method for second order elliptic problems, Mathematical Aspects of Finite Element Methods. Springer, Berlin. Lect. Notes Math. 606 (1977) 292-315. | Zbl 0362.65089

[27] S. Salmon, Développement numérique de la formulation tourbillon-vitesse-pression pour le problème de Stokes. Thesis, Université Pierre et Marie Curie, Paris (1999).

[28] R. Temam, Theory and Numerical Analysis of the Navier-Stokes Equations. North-Holland (1977). | Zbl 0383.35057

[29] R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley & Teubner (1996). | Zbl 0853.65108