Numerical simulation of high frequency waves in highly heterogeneous media is a challenging problem. Resolving the fine structure of the wave field typically requires extremely small time steps and spatial meshes. We show that capturing macroscopic quantities of the wave field, such as the wave energy density, is achievable with much coarser discretizations. We obtain such a result using a time splitting algorithm that solves separately and successively propagation and scattering in the simplified regime of the parabolic wave equation in a random medium. The mathematical theory of the convergence and statistical properties of the algorithm is based on the analysis of the Wigner transforms in random media. Our results provide a step toward understanding time and space discretizations that are needed in order for the numerical algorithm to capture the correct macroscopic statistics of the wave energy density in a random medium.
@article{M2AN_2004__38_6_961_0, author = {Bal, Guillaume and Ryzhik, Lenya}, title = {Time splitting for wave equations in random media}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {38}, year = {2004}, pages = {961-987}, doi = {10.1051/m2an:2004046}, mrnumber = {2108940}, zbl = {1130.74393}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2004__38_6_961_0} }
Bal, Guillaume; Ryzhik, Lenya. Time splitting for wave equations in random media. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 38 (2004) pp. 961-987. doi : 10.1051/m2an:2004046. http://gdmltest.u-ga.fr/item/M2AN_2004__38_6_961_0/
[1] On the self-averaging of wave energy in random media. SIAM Multiscale Model. Simul. 2 (2004) 398-420. | Zbl 1072.35505
,[2] Time reversal for classical waves in random media. C. R. Acad. Sci. Paris I 333 (2001) 1041-1046. | Zbl 1033.74022
and ,[3] Time reversal and refocusing in random media. SIAM J. Appl. Math. 63 (2003) 1475-1498. | Zbl 1126.76360
and ,[4] Radiative transport in a periodic structure. J. Statist. Phys. 95 (1999) 479-494. | Zbl 0964.82048
, , and ,[5] Radiative transport limit for the random Schrödinger equations. Nonlinearity 15 (2002) 513-529. | Zbl 0999.60061
, and ,[6] Self-averaging in time reversal for the parabolic wave equation. Stochastics Dynamics 4 (2002) 507-531. | Zbl 1020.35126
, and ,[7] Self-averaging of the Wigner transform in random media. Comm. Math. Phys. 242 (2003) 81-135. | Zbl 1037.35108
, and ,[8] On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime. J. Comp. Phys. 175 (2002) 487-524. | Zbl 1006.65112
, and ,[9] Mathematical foundations of the time reversal mirror. Asymptot. Anal. 29 (2002) 157-182. | Zbl 1015.35005
and ,[10] Super-resolution in time-reversal acoustics. J. Acoust. Soc. Am. 111 (2002) 230-248.
, and ,[11] Radiative Transfer. Dover Publications, New York (1960). | MR 111583
,[12] A time-reversal method for an acoustical pulse propagating in randomly layered media. Wave Motion 25 (1997) 361-368. | Zbl 0920.73051
and ,[13] Higher-order numerical methods for transient wave equations. Scientific Computation, Springer-Verlag, Berlin (2002). | MR 1870851 | Zbl 0985.65096
,[14] Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 6, Springer-Verlag, Berlin (1993). | MR 1295030 | Zbl 0802.35001
and ,[15] Nunerical Methods for Wave equations in Geophysical Fluid Dynamics. Springer, New York (1999). | MR 1660086 | Zbl 0918.76001
,[16] Linear Boltzmann equation as the weak coupling limit of a random Schrödinger equation. Comm. Pure Appl. Math. 53 (2000) 667-735. | Zbl 1028.82010
and ,[17] Time reversed acoustics. Physics Today 50 (1997) 34-40.
,[18] Chaos and time-reversed acoustics. Physica Scripta 90 (2001) 268-277.
,[19] Homogenization limits and Wigner transforms. Comm. Pure Appl. Math. 50 (1997) 323-380. | Zbl 0881.35099
, , and ,[20] The convergence of numerical transfer schemes in diffusive regimes. I. Discrete-ordinate method. SIAM J. Numer. Anal. 36 (1999) 1333-1369. | Zbl 1053.82030
, and ,[21] A long-range and variable focus phase-conjugation experiment in a shallow water. J. Acoust. Soc. Am. 105 (1999) 1597-1604.
, , , , and ,[22] Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comp. 227 (1999) 913-943. | Zbl 0922.65071
, and ,[23] Wave Propagation and Scattering in Random Media. New York, Academics (1978). | Zbl 0873.65115
,[24] Asymptotic methods for partial differential equations: The reduced wave equation and Maxwell's equations, in Surveys in applied mathematics, J.B. Keller, D. McLaughlin and G. Papanicolaou Eds., Plenum Press, New York (1995). | Zbl 0848.35068
and ,[25] Sur les mesures de Wigner. Rev. Mat. Iberoamericana 9 (1993) 553-618. | Zbl 0801.35117
and ,[26] Numerical approximation of quadratic observables of Schrödinger-type equations in the semi-classical limit. Numer. Math. 81 (1999) 595-630. | Zbl 0928.65109
, and ,[27] A Wigner-measure analysis of the Dufort-Frankel scheme for the Schrödinger equation. SIAM J. Numer. Anal. 40 (2002) 1281-1310. | Zbl 1029.65098
, , and ,[28] The parabolic approximation and time reversal. Matem. Contemp. 23 (2002) 139-159. | Zbl 1027.76049
, and ,[29] Statistical stability in time reversal. SIAM J. App. Math. 64 (2004) 1133-1155. | Zbl 1065.35058
, and ,[30] Classical and quantum transport in random media. J. Math. Pures Appl. 82 (2003) 711-748. | Zbl 1035.82037
and ,[31] Transport equations for elastic and other waves in random media. Wave Motion 24 (1996) 327-370. | Zbl 0954.74533
, and ,[32] Seismic wave propagation and scattering in the heterogeneous earth. AIP series in modern acoustics and signal processing, AIP Press, Springer, New York (1998). | MR 1488700 | Zbl 0894.73001
and ,[33] Introduction to Wave Scattering, Localization and Mesoscopic Phenomena. Academic Press, New York (1995).
,[34] Derivation of the transport equation for electrons moving through random impurities. J. Stat. Phys. 17 (1977) 385-412. | Zbl 0964.82508
,[35] On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5 (1968) 507-517. | Zbl 0184.38503
,[36] The parabolic approximation method, Lect. notes Phys., Vol. 70, Wave propagation and underwater acoustics. Springer-Verlag (1977). | MR 475274
,[37] The elements of wave propagation in random media. McGraw-Hill, New York (1977).
,[38] Analytical solution of the fourth-moment equation and interpretation as a set of phase screens. J. Opt. Soc. Am. 2 (1985) 2077-2091.
,