We analyze residual and hierarchical a posteriori error estimates for nonconforming finite element approximations of elliptic problems with variable coefficients. We consider a finite volume box scheme equivalent to a nonconforming mixed finite element method in a Petrov-Galerkin setting. We prove that all the estimators yield global upper and local lower bounds for the discretization error. Finally, we present results illustrating the efficiency of the estimators, for instance, in the simulation of Darcy flows through heterogeneous porous media.
@article{M2AN_2004__38_6_903_0, author = {Alaoui, Linda El and Ern, Alexandre}, title = {Residual and hierarchical a posteriori error estimates for nonconforming mixed finite element methods}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {38}, year = {2004}, pages = {903-929}, doi = {10.1051/m2an:2004044}, mrnumber = {2108938}, zbl = {1077.65113}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2004__38_6_903_0} }
Alaoui, Linda El; Ern, Alexandre. Residual and hierarchical a posteriori error estimates for nonconforming mixed finite element methods. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 38 (2004) pp. 903-929. doi : 10.1051/m2an:2004044. http://gdmltest.u-ga.fr/item/M2AN_2004__38_6_903_0/
[1] Hierarchical robust a posteriori error estimator for a singularly pertubed problem. C.R Acad. Paris I 336 (2003) 95-100. | Zbl 1028.65116
, and ,[2] Estimateur d'erreur a posteriori hiérarchique. Application aux éléments finis mixtes. Numer. Math. 80 (1998) 159-179. | Zbl 0909.65076
, , and ,[3] Un schéma de volumes ou éléments finis adaptatif pour les équations de Darcy à perméabilité variable. C.R Acad. Paris I 333 (2001) 693-698. | Zbl 0996.65123
and ,[4] A priori and a posteriori analysis of finite volume discretizations of Darcy's equations. Numer. Math. 96 (2003) 17-42. | Zbl 1050.76035
, and ,[5] A posteriori error estimation in finite element analysis. Wiley-Interscience Publication (2000). | MR 1885308 | Zbl 1008.65076
and ,[6] A posteriori error estimates for FEM with violated Galerkin orthogonality. Numer. Methods Partial Differential Equations 18 (2002) 241-259. | Zbl 1003.65058
,[7] Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér. 19 (1985) 7-32. | Numdam | Zbl 0567.65078
and ,[8] A posteriori estimates based on hierarchical bases. SIAM J. Numer. Anal. 30 (1991) 921-935. | Zbl 0787.65078
and ,[9] Some a posteriori error estimators for elliptic partial differential equations. Math. Comp. 44 (1985) 283-301. | Zbl 0569.65079
and ,[10] Energy norm a posteriori error estimation for discontinuous Galerkin methods. Comput. Methods Appl. Mech. Engrg. 192 (2003) 723-733. | Zbl 1042.65083
, and ,[11]
, private communication.[12] Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math. 85 (2000) 579-608. | Zbl 0962.65096
and ,[13] Finite elements. Cambridge Univ. Press (1997). | MR 1463151 | Zbl 0894.65054
,[14] A posteriori error estimate for the mixed finite element method. Math. Comp. 66 (1997) 465-476. | Zbl 0864.65068
,[15] A posteriori error control in low-order finite element discretizations of incompressible stationary flow problems. Math. Comp. 70 (2000) 1353-1381. | Zbl 1014.76042
and ,[16] Finite volume box schemes on triangular meshes. RAIRO Modél. Math. Anal. Numér. 32 (1998) 631-649. | Numdam | Zbl 0920.65065
and ,[17] Finite volume box schemes and mixed methods. ESAIM: M2AN 31 (2000) 1087-1106. | Numdam | Zbl 0966.65082
,[18] Some nonconforming mixed box schemes for elliptic problems. Numer. Methods Partial Differential Equations 8 (2002) 355-373. | Zbl 1004.65113
and ,[19] Conforming and nonconforming mixed finite element methods for solving the stationary Stokes equations I. RAIRO Anal. Numér. 3 (1973) 33-75. | Numdam | Zbl 0302.65087
and ,[20] Error estimators for nonconforming finite element approximations of the Stokes problem. Math. Comp. 64 (1995) 1017-1033. | Zbl 0827.76042
, and ,[21] A posteriori error estimators for nonconforming finite element methods. RAIRO Modél Math. Anal. Numér. 30 (1996) 385-400. | Numdam | Zbl 0853.65110
, , and ,[22] Theory and practice of finite elements, Appl. Math. Ser., Springer, New York 159 (2004). | MR 2050138 | Zbl 1059.65103
and ,[23] A non-conforming piecewise quadratic finite element on triangles. Int. J. Num. Meth. Engrg. 19 (1983) 505-520. | Zbl 0514.73068
and ,[24] Element-oriented and edge-oriented local error estimators for non-conforming finite element methods. RAIRO Modél. Math. Anal. Numér. 30 (1996) 237-263. | Numdam | Zbl 0843.65075
and ,[25] A posteriori -error estimates for the nonconforming /-finite element discretization of the Stokes equations. J. Comput. Appl. Math. 96 (1998) 99-116. | Zbl 0930.65123
,[26] A posteriori error estimates for non-conforming finite element schemes. Calcolo 36 (1999) 129-141. | Zbl 0936.65128
and ,[27] A posteriori error estimates for a discontinuous Galerkin approximation of second order elliptic problems. SIAM J. Numer. Anal. 41 (2003) 2374-2399. | Zbl 1058.65120
and ,[28] A mixed finite element method for second order elliptic problems, in Mathematical Aspects of the Finite Element Method, E. Magenes and I. Galligani Eds., Springer-Verlag, New York, Lect. Notes Math. 606 (1977). | MR 483555 | Zbl 0362.65089
and ,[29] A posteriori error estimates with post-processing for nonconforming finite elements. ESAIM: M2AN 36 (2002) 489-503. | Numdam | Zbl 1041.65083
,[30] Mixed finite volume methods. Int. J. Num. Meth. Engrg. 46 (1999) 1351-1366. | Zbl 0948.65125
and ,[31] A posteriori error estimators for the Stokes equations. II. Non-conforming discretizations. Numer. Math. 60 (1991) 235-249. | Zbl 0739.76035
,[32] A review of a posteriori error estimation and adaptative mesh-refinement techniques. Chichester, England (1996). | Zbl 0853.65108
,[33] A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart-Thomas. Math. Comp. 68 (1999) 1347-1378. | Zbl 0929.65094
and ,