We analyze an isoparametric finite element method to compute the vibration modes of a plate, modeled by Reissner-Mindlin equations, in contact with a compressible fluid, described in terms of displacement variables. To avoid locking in the plate, we consider a low-order method of the so called MITC (Mixed Interpolation of Tensorial Component) family on quadrilateral meshes. To avoid spurious modes in the fluid, we use a low-order hexahedral Raviart-Thomas elements and a non conforming coupling is used on the fluid-structure interface. Applying a general approximation theory for spectral problems, under mild assumptions, we obtain optimal order error estimates for the computed eigenfunctions, as well as a double order for the eigenvalues. These estimates are valid with constants independent of the plate thickness. Finally, we report several numerical experiments showing the behavior of the methods.
@article{M2AN_2004__38_6_1055_0, author = {Hern\'andez, Erwin}, title = {Approximation of the vibration modes of a plate coupled with a fluid by low-order isoparametric finite elements}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {38}, year = {2004}, pages = {1055-1070}, doi = {10.1051/m2an:2004050}, mrnumber = {2108944}, zbl = {1130.74453}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2004__38_6_1055_0} }
Hernández, Erwin. Approximation of the vibration modes of a plate coupled with a fluid by low-order isoparametric finite elements. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 38 (2004) pp. 1055-1070. doi : 10.1051/m2an:2004050. http://gdmltest.u-ga.fr/item/M2AN_2004__38_6_1055_0/
[1] Derivation and justification of plate models by variational methods, in Plates and Shells, M. Fortin Ed., AMS, Providence, CRM Proc. Lect. Notes Ser. 21 (1999) 1-20. | Zbl 0958.74033
, , and ,[2] A uniformly accurate finite element method for the Reissner-Mindlin plate. SIAM J. Numer. Anal. 26 (1989) 1276-1290. | Zbl 0696.73040
and ,[3] On the convergence of a four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation in Mathematics of Finite Elements an Applications V, J.R. Whiteman Ed., Academic Press, London (1985) 491-503. | Zbl 0589.73068
and ,[4] A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation. Int. J. Numer. Methods Eng. 21 (1985) 367-383. | Zbl 0551.73072
and ,[5] Finite element computation of the vibration modes of a fluid-solid system. Comp. Methods Appl. Mech. Eng. 119 (1994) 355-370. | Zbl 0851.73053
and ,[6] An hexahedral face element for elastoacoustic vibration problems. J. Comp. Acoust. 119 (1994) 355-370. | Zbl 0851.73053
, and ,[7] Finite element vibration analysis of fluid-solid systems without spurious modes. SIAM J. Numer. Anal. 32 (1995) 1280-1295. | Zbl 0833.73050
, , , and ,[8] Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). | MR 1115205 | Zbl 0788.73002
and ,[9] Quasi-optimal error bounds for approximation of shear-stresses in Mindlin-Reissner plate models. Math. Models Methods Appl. Sci. 1 (1991) 125-151. | Zbl 0751.73053
, and ,[10] On mixed finite element methods for the Reissner-Mindlin plate model. Math. Comp. 58 (1992) 561-573. | Zbl 0763.73054
and ,[11] Approximation of the vibration modes of a plate by Reissner-Mindlin equations. Math. Comp. 68 (1999) 1447-1463. | Zbl 0945.74030
, , , and ,[12] Finite element analysis of the vibration problem of a plate coupled with a fluid. Numer. Math. 86 (2000) 591-616. | Zbl 0984.74079
, , , and ,[13] Computation of the vibration modes of plates and shells by low-order MITC quadrilateral finite elements. SIAM J. Numer. Anal. 41 (2003) 1751-1772. | Zbl 1115.74048
, , , and ,[14] Métodos numéricos de elementos finitos en problemas de interacción fluido-estructura. Ph.D. Thesis, U. de Santiago de Compostela, Spain (2002).
,[15] Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo (1986). | MR 851383 | Zbl 0585.65077
and ,[16] The Finite Element Method: Linear Static and Dinamic Finite Element Analysis. Prentice-Hall, Englewood Cliffs, NJ (1987). | MR 1008473 | Zbl 0634.73056
,[17] Fluid-structure interactions. John Wiley & Sons, New York (1995). | Zbl 0834.73002
and ,[18] The order of convergence of eigenfrequencies in finite element approximations of fluid-structure interaction problems. Math. Comp. 65 (1996) 1463-1475. | Zbl 0853.65111
and ,[19] A mixed finite element method for second order elliptic problems, in Mathematical Aspects of Finite Element Methods, Springer-Verlag, Berlin, Heidelberg, New York. Lect. Notes Math. 606 (1977) 292-315. | Zbl 0362.65089
and ,[20] An error analysis of MITC plate elements. SIAM J. Numer. Anal. 34 (1997) 544-568. | Zbl 0877.73071
and ,[21] Sur l'analyse numérique des méthodes d'éléments finis hybrides et mixtes. Thèse de Doctorat d'Etat, Université Pierre et Marie Curie, Paris 6, France (1977).
,