Approximation of the vibration modes of a plate coupled with a fluid by low-order isoparametric finite elements
Hernández, Erwin
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 38 (2004), p. 1055-1070 / Harvested from Numdam

We analyze an isoparametric finite element method to compute the vibration modes of a plate, modeled by Reissner-Mindlin equations, in contact with a compressible fluid, described in terms of displacement variables. To avoid locking in the plate, we consider a low-order method of the so called MITC (Mixed Interpolation of Tensorial Component) family on quadrilateral meshes. To avoid spurious modes in the fluid, we use a low-order hexahedral Raviart-Thomas elements and a non conforming coupling is used on the fluid-structure interface. Applying a general approximation theory for spectral problems, under mild assumptions, we obtain optimal order error estimates for the computed eigenfunctions, as well as a double order for the eigenvalues. These estimates are valid with constants independent of the plate thickness. Finally, we report several numerical experiments showing the behavior of the methods.

Publié le : 2004-01-01
DOI : https://doi.org/10.1051/m2an:2004050
Classification:  65N15,  65N30,  74F10,  74H25
@article{M2AN_2004__38_6_1055_0,
     author = {Hern\'andez, Erwin},
     title = {Approximation of the vibration modes of a plate coupled with a fluid by low-order isoparametric finite elements},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {38},
     year = {2004},
     pages = {1055-1070},
     doi = {10.1051/m2an:2004050},
     mrnumber = {2108944},
     zbl = {1130.74453},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2004__38_6_1055_0}
}
Hernández, Erwin. Approximation of the vibration modes of a plate coupled with a fluid by low-order isoparametric finite elements. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 38 (2004) pp. 1055-1070. doi : 10.1051/m2an:2004050. http://gdmltest.u-ga.fr/item/M2AN_2004__38_6_1055_0/

[1] S.M. Alessandrini, D.N. Arnold, R.S. Falk and A.L. Madureira, Derivation and justification of plate models by variational methods, in Plates and Shells, M. Fortin Ed., AMS, Providence, CRM Proc. Lect. Notes Ser. 21 (1999) 1-20. | Zbl 0958.74033

[2] D.N. Arnold and R.S. Falk, A uniformly accurate finite element method for the Reissner-Mindlin plate. SIAM J. Numer. Anal. 26 (1989) 1276-1290. | Zbl 0696.73040

[3] K.J. Bathe and F. Brezzi, On the convergence of a four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation in Mathematics of Finite Elements an Applications V, J.R. Whiteman Ed., Academic Press, London (1985) 491-503. | Zbl 0589.73068

[4] K.J. Bathe and E.N. Dvorkin, A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation. Int. J. Numer. Methods Eng. 21 (1985) 367-383. | Zbl 0551.73072

[5] A. Bermúdez and R. Rodríguez, Finite element computation of the vibration modes of a fluid-solid system. Comp. Methods Appl. Mech. Eng. 119 (1994) 355-370. | Zbl 0851.73053

[6] A. Bermúdez, P. Gamallo and R. Rodríguez, An hexahedral face element for elastoacoustic vibration problems. J. Comp. Acoust. 119 (1994) 355-370. | Zbl 0851.73053

[7] A. Bermúdez, R. Durán, M.A. Muschietti, R. Rodríguez and J. Solomin, Finite element vibration analysis of fluid-solid systems without spurious modes. SIAM J. Numer. Anal. 32 (1995) 1280-1295. | Zbl 0833.73050

[8] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). | MR 1115205 | Zbl 0788.73002

[9] F. Brezzi, M. Fortin and R. Stenberg, Quasi-optimal error bounds for approximation of shear-stresses in Mindlin-Reissner plate models. Math. Models Methods Appl. Sci. 1 (1991) 125-151. | Zbl 0751.73053

[10] R. Durán and E. Liberman, On mixed finite element methods for the Reissner-Mindlin plate model. Math. Comp. 58 (1992) 561-573. | Zbl 0763.73054

[11] R. Durán, L. Hervella-Nieto, E. Liberman, R. Rodríguez and J. Solomin, Approximation of the vibration modes of a plate by Reissner-Mindlin equations. Math. Comp. 68 (1999) 1447-1463. | Zbl 0945.74030

[12] R. Durán, L. Hervella-Nieto, E. Liberman, R. Rodríguez and J. Solomin, Finite element analysis of the vibration problem of a plate coupled with a fluid. Numer. Math. 86 (2000) 591-616. | Zbl 0984.74079

[13] R. Durán, E. Hernández, L. Hervella-Nieto, E. Liberman and R. Rodríguez, Computation of the vibration modes of plates and shells by low-order MITC quadrilateral finite elements. SIAM J. Numer. Anal. 41 (2003) 1751-1772. | Zbl 1115.74048

[14] P. Gamallo, Métodos numéricos de elementos finitos en problemas de interacción fluido-estructura. Ph.D. Thesis, U. de Santiago de Compostela, Spain (2002).

[15] V. Girault and P.A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo (1986). | MR 851383 | Zbl 0585.65077

[16] T.J.R. Hughes, The Finite Element Method: Linear Static and Dinamic Finite Element Analysis. Prentice-Hall, Englewood Cliffs, NJ (1987). | MR 1008473 | Zbl 0634.73056

[17] H.J.-P. Morand and R. Ohayon, Fluid-structure interactions. John Wiley & Sons, New York (1995). | Zbl 0834.73002

[18] R. Rodríguez and J. Solomin, The order of convergence of eigenfrequencies in finite element approximations of fluid-structure interaction problems. Math. Comp. 65 (1996) 1463-1475. | Zbl 0853.65111

[19] P.A. Raviart and J.M. Thomas, A mixed finite element method for second order elliptic problems, in Mathematical Aspects of Finite Element Methods, Springer-Verlag, Berlin, Heidelberg, New York. Lect. Notes Math. 606 (1977) 292-315. | Zbl 0362.65089

[20] R. Stenberg and M. Suri, An hp error analysis of MITC plate elements. SIAM J. Numer. Anal. 34 (1997) 544-568. | Zbl 0877.73071

[21] J.M. Thomas, Sur l'analyse numérique des méthodes d'éléments finis hybrides et mixtes. Thèse de Doctorat d'Etat, Université Pierre et Marie Curie, Paris 6, France (1977).