In this paper we study a model problem describing the movement of a glacier under Glen's flow law and investigated by Colinge and Rappaz [Colinge and Rappaz, ESAIM: M2AN 33 (1999) 395-406]. We establish error estimates for finite element approximation using the results of Chow [Chow, SIAM J. Numer. Analysis 29 (1992) 769-780] and Liu and Barrett [Liu and Barrett, SIAM J. Numer. Analysis 33 (1996) 98-106] and give an analysis of the convergence of the successive approximations used in [Colinge and Rappaz, ESAIM: M2AN 33 (1999) 395-406]. Supporting numerical convergence studies are carried out and we also demonstrate the numerical performance of an a posteriori error estimator in adaptive mesh refinement computation of the problem.
@article{M2AN_2004__38_5_741_0, author = {Chow, Sum S. and Carey, Graham F. and Anderson, Michael L.}, title = {Finite element approximations of a glaciology problem}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {38}, year = {2004}, pages = {741-756}, doi = {10.1051/m2an:2004033}, mrnumber = {2104426}, zbl = {1130.86300}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2004__38_5_741_0} }
Chow, Sum S.; Carey, Graham F.; Anderson, Michael L. Finite element approximations of a glaciology problem. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 38 (2004) pp. 741-756. doi : 10.1051/m2an:2004033. http://gdmltest.u-ga.fr/item/M2AN_2004__38_5_741_0/
[1] Velocity and stress fields in grounded glaciers: A simple algorithm for including deviatoric stress gradients. J. Glaciology 41 (1995) 333-344.
,[2] Computational Grids: Generation, Adaptation and Solution Strategies. Taylor & Francis (1997). | MR 1483891 | Zbl 0955.74001
,[3] Finite element error estimates for nonlinear elliptic equations of monotone type. Numer. Math. 54 (1989) 373-393. | Zbl 0643.65058
,[4] Finite element error estimates for a blast furnace gas flow problem. SIAM J. Numer. Analysis 29 (1992) 769-780. | Zbl 0749.76040
,[5] Numerical approximation of generalized Newtonian fluids using Heindl elements: I. Theoretical estimates. Internat. J. Numer. Methods Fluids 41 (2003) 1085-1118. | Zbl 1047.76040
and ,[6] Stress and velocity fields in glaciers: Part I. Finite-difference schemes for higher-order glacier models. J. Glaciology 44 (1998) 448-456.
and ,[7] A strongly nonlinear problem arising in glaciology. ESAIM: M2AN 33 (1999) 395-406. | Numdam | Zbl 0946.65115
and ,[8] The Flow Law of Ice, Internat. Assoc. Sci. Hydrology Pub. 47, Symposium at Chamonix 1958 - Physics of the Movement of the Ice (1958) 171-183.
,[9] Approximation of a nonlinear elliptic problem arising in a non-Newtonian fluid flow model in glaciology. ESAIM: M2AN 37 (2003) 175-186. | Numdam | Zbl 1046.76002
and ,[10] The Kačanov method for some nonlinear problems. Appl. Num. Anal. 24 (1997) 57-79. | Zbl 0878.65099
, and ,[11] Error estimates for a finite element approximation of a minimal surface. Math. Comp. 29 (1975) 343-349. | Zbl 0302.65086
and ,[12] Finite element approximation of some degenerate monotone quasilinear elliptic systems. SIAM J. Numer. Analysis 33 (1996) 98-106. | Zbl 0846.65064
and ,[13] The Physics of Glaciers, 2nd edition. Pergamon Press (1981).
,[14] Nonlinear Functional Analysis and Its Applications II/B. Nonlinear Monotone Operators, Springer-Verlag (1990). | MR 1033498 | Zbl 0684.47029
,