This paper analyses the implementation of the generalized finite differences method for the HJB equation of stochastic control, introduced by two of the authors in [Bonnans and Zidani, SIAM J. Numer. Anal. 41 (2003) 1008-1021]. The computation of coefficients needs to solve at each point of the grid (and for each control) a linear programming problem. We show here that, for two dimensional problems, this linear programming problem can be solved in operations, where is the size of the stencil. The method is based on a walk on the Stern-Brocot tree, and on the related filling of the set of positive semidefinite matrices of size two.
@article{M2AN_2004__38_4_723_0, author = {Bonnans, J. Fr\'ed\'eric and Ottenwaelter, \'Elisabeth and Zidani, Housnaa}, title = {A fast algorithm for the two dimensional HJB equation of stochastic control}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {38}, year = {2004}, pages = {723-735}, doi = {10.1051/m2an:2004034}, mrnumber = {2087732}, zbl = {1130.93433}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2004__38_4_723_0} }
Bonnans, J. Frédéric; Ottenwaelter, Élisabeth; Zidani, Housnaa. A fast algorithm for the two dimensional HJB equation of stochastic control. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 38 (2004) pp. 723-735. doi : 10.1051/m2an:2004034. http://gdmltest.u-ga.fr/item/M2AN_2004__38_4_723_0/
[1] On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations. ESAIM: M2AN 36 (2002) 33-54. | Numdam | Zbl 0998.65067
and ,[2] Error bounds for monotone approximation schemes for Hamilton-Jacobi-Bellman equations (to appear). | MR 2177879 | Zbl 1092.65077
and ,[3] Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Analysis 4 (1991) 271-283. | Zbl 0729.65077
and ,[4] Consistency of generalized finite difference schemes for the stochastic HJB equation. SIAM J. Numer. Anal. 41 (2003) 1008-1021. | Zbl 1130.49307
and ,[5] A fast algorithm for the two dimensional HJB equation of stochastic control. Technical report, INRIA (2004). Rapport de Recherche 5078.
, and ,[6] An approximation scheme for the optimal control of diffusion processes. RAIRO Modél. Math. Anal. Numér. 29 (1995) 97-122. | Numdam | Zbl 0822.65044
and ,[7] Controlled Markov processes and viscosity solutions. Springer, New York (1993). | MR 1199811 | Zbl 0773.60070
and ,[8] Concrete Mathematics, A Foundation For Computer Science. Addison-Wesley, Reading, MA (1994). Second edition. | MR 1397498 | Zbl 0668.00003
, and ,[9] Continuous dependence estimates for viscosity solutions of fully nonlinear degenerate parabolic equations. J. Differ. Equations 183 (2002) 497-525. | Zbl 1086.35061
and ,[10] On the rate of convergence of finite-difference approximations for Bellman's equations with variable coefficients. Probab. Theory Related Fields 117 (2000) 1-16. | Zbl 0971.65081
,[11] Probability methods for approximations in stochastic control and for elliptic equations. Academic Press, New York (1977). Math. Sci. Engrg. 129. | MR 469468 | Zbl 0547.93076
,[12] Numerical methods for stochastic control problems in continuous time. Springer, New York, Appl. Math. 24 (2001). Second edition. | MR 1217486 | Zbl 0968.93005
and ,[13] Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. Part 2: Viscosity solutions and uniqueness. Comm. Partial Differential Equations 8 (1983) 1229-1276. | Zbl 0716.49023
,[14] Approximation numérique des équations de Hamilton-Jacobi-Bellman. RAIRO Anal. Numér. 14 (1980) 369-393. | Numdam | Zbl 0469.65041
and ,[15] Some estimates for finite difference approximations. SIAM J. Control Optim. 27 (1989) 579-607. | Zbl 0684.93088
,