We investigate different asymptotic regimes for Vlasov equations modeling the evolution of a cloud of particles in a turbulent flow. In one case we obtain a convection or a convection-diffusion effective equation on the concentration of particles. In the second case, the effective model relies on a Vlasov-Fokker-Planck equation.
@article{M2AN_2004__38_4_673_0, author = {Goudon, Thierry and Poupaud, Fr\'ed\'eric}, title = {On the modeling of the transport of particles in turbulent flows}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {38}, year = {2004}, pages = {673-690}, doi = {10.1051/m2an:2004032}, mrnumber = {2087729}, zbl = {1079.76037}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2004__38_4_673_0} }
Goudon, Thierry; Poupaud, Frédéric. On the modeling of the transport of particles in turbulent flows. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 38 (2004) pp. 673-690. doi : 10.1051/m2an:2004032. http://gdmltest.u-ga.fr/item/M2AN_2004__38_4_673_0/
[1] Limites fluides pour des modèles cinétiques de brouillards de gouttes monodispersés. C. R. Acad. Sci. 331 (2000) 651-654. | Zbl 0965.35136
,[2] Limite semi-classique de transformées de Wigner dans des milieux périodiques ou aléatoires. Thèse Université de Nice-Sophia Antipolis (Novembre 2002).
,[3] The dynamics of aerocolloidal systems. Pergamon Press (1970).
and ,[4] Dynamic theory of suspensions with Brownian effects. SIAM J. Appl. Math. 43 (1983) 885-906. | Zbl 0543.76133
and ,[5] Solutions of a kinetic stochastic equation modeling a spray in a turbulent gas flow. Math. Models Methods Appl. Sci. 7 (1997) 239-263. | Zbl 0868.60054
and ,[6] About the modeling of complex flows by gas-particles methods, Proceedings of the workshop “Trends in Numerical and Physical Modeling for Industrial Multiphase Flows”, Cargèse, France (2000).
,[7] Limites visqueuses pour des systèmes de type Fokker-Planck-Burgers unidimensionnels. C. R. Acad. Sci. 332 (2001) 863-868. | Zbl 1067.76090
and ,[8] Work in preparation. Personal communication.
and ,[9] Kinetic model for the motion of compressible bubbles in a perfect fluid. Eur. J. Mech. B/Fluids 21 (2002) 469-491. | Zbl 1051.76620
and ,[10] | Zbl 0979.82048
, in From kinetic to macroscopic models in Kinetic equations and asymptotic theory, B. Perthame and L. Desvillettes Eds., Gauthier-Villars, Ser. Appl. Math. 4 (2000) 41-121.[11] Asymptotic problems for a kinetic model of two-phase flow. Proc. Royal Soc. Edimburgh 131 (2001) 1371-1384. | Zbl 0992.35017
,[12] Hydrodymamic limit for the Vlasov-Navier-Stokes system: Light particles regime. Preprint.
, and ,[13] Hydrodymamic limit for the Vlasov-Navier-Stokes system: Fine particles regime. Preprint.
, and ,[14] Global existence and large time behaviour of solutions for the Vlasov-Stokes equations. Japan J. Ind. Appl. Math. 15 (1998) 51-74. | Zbl 1306.76052
,[15] On the motion of dispersed balls in a potential flow: a kinetic description of the added mass effect. SIAM J. Appl. Math. 60 (1999) 61-83. | MR 1740835 | Zbl 0964.76085
, and ,[16] Large time concentrations for solutions to kinetic equations with energy dissipation. Comm. Partial Differential Equations 25 (2000) 541-557. | MR 1748358 | Zbl 0965.35014
,[17] Macroscopic limit of Vlasov type equations with friction. Ann. IHP Anal. Non Linéaire 17 (2000) 651-672. | Numdam | MR 1791881 | Zbl 0965.35013
,[18] | MR 1763153 | Zbl 0957.76087
and , in Notes on mathematical problems on the dynamics of dispersed particles interacting through a fluid in Modeling in applied sciences, a kinetic theory approach, N. Bellomo and M. Pulvirenti Eds., Birkhäuser (2000) 111-147.[19] Simplified models for turbulent diffusion: Theory, numerical modeling, and physical phenomena. Physics Reports 314 (1999) 237-574. | MR 1699757
and ,[20] Stochastic Liouville equations. J. Math. Phys. 4 (1963) 174-183. | MR 149885 | Zbl 0135.45102
,[21] Electric turbulence in a plasma subject to a strong magnetic field. Preprint. | MR 2096317 | Zbl 1080.35153
and ,[22] Statistical properties and numerical implementation of a model for droplets dispersion in a turbulent gas. J. Comp. Phys. 83 (1989) 345-360. | Zbl 0673.76065
,[23] Classical and quantum transport in random media. J. Math. Pures Appl. 82 (2003) 711-748. | MR 1996779 | Zbl 1035.82037
and ,[24] Kinetic theory for bubbly flows I, II. SIAM J. Appl. Math. 56 (1996) 327-371. | Zbl 0857.76090
and ,[25] A review of mathematical topics in collisional kinetic theory, in Handbook of mathematical fluid mechanics, S. Friedlander and D. Serre Eds., North-Holland (2002). | MR 1942465 | Zbl 1170.82369 | Zbl pre01942873
,[26] Combustion theory. Benjamin Cummings Publ., 2nd edn. (1985).
,[27] A statistical model of particle transport and heat transfer in turbulent shear flows. Phys. Fluids 11 (1999) 1521-1534. | Zbl 1147.76544
,