This contribution deals with a mixed variational formulation of 3D contact problems with the simplest model involving friction. This formulation is based on a dualization of the set of admissible displacements and the regularization of the non-differentiable term. Displacements are approximated by piecewise linear elements while the respective dual variables by piecewise constant functions on a dual partition of the contact zone. The rate of convergence is established provided that the solution is smooth enough. The numerical realization of such problems will be discussed and results of a model example will be shown.
@article{M2AN_2004__38_3_563_0, author = {Haslinger, Jaroslav and Sassi, Taoufik}, title = {Mixed finite element approximation of 3D contact problems with given friction : error analysis and numerical realization}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {38}, year = {2004}, pages = {563-578}, doi = {10.1051/m2an:2004026}, mrnumber = {2075760}, zbl = {1080.74046}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2004__38_3_563_0} }
Haslinger, Jaroslav; Sassi, Taoufik. Mixed finite element approximation of 3D contact problems with given friction : error analysis and numerical realization. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 38 (2004) pp. 563-578. doi : 10.1051/m2an:2004026. http://gdmltest.u-ga.fr/item/M2AN_2004__38_3_563_0/
[1] Sobolev Spaces. Academic Press (1975). | MR 450957 | Zbl 0314.46030
,[2] Sur l'origine de la résistance dans les machines. Mémoires de l'Académie Royale (1699) 206-222.
,[3] Méthodes d'éléments finis avec hybridisation frontière pour les problèmes de contact avec frottement. C.R. Acad. Sci. Paris, Ser. I 334 (2002) 917-922. | Zbl 1073.74047
and ,[4] Éléments finis avec joints pour des problèmes de contact avec frottement de Coulomb non local. C.R. Acad. Sci. Paris, Ser. I 325 (1997) 1323-1328. | Zbl 0898.73059
, , and ,[5] The finite element method for elliptic problems, Handbook of Numerical Analysis, P.G. Ciarlet and J.L. Lions Eds., Vol. 2, Part 1, North-Holland (1991) 17-352. | Zbl 0875.65086
,[6] Théorie des machines simples. Mémoire de Mathématique et de Physique de l'Académie Royale 10 (1785) 145-173.
,[7] Box constrained quadratic programming with proportioning and projections. SIAM J. Opt. 7 (1997) 871-887. | Zbl 0912.65052
,[8] Les inéquations en mécanique et en physique. Dunod, Paris (1972). | MR 464857 | Zbl 0298.73001
and ,[9] Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976). | MR 463994 | Zbl 0322.90046
and ,[10] Numerical methods for nonlinear variational problems. Springer, New York (1984). | MR 737005 | Zbl 0536.65054
,[11] Elliptic Problems in Nonsmooth Domains. Monogr. Studies Math., Pitman 24 (1985). | MR 775683 | Zbl 0695.35060
,[12] Approximation of the Signorini problem with friction by mixed finite element method, J. Math. Anal. Appl. 86 (1982) 99-122. | Zbl 0486.73099
and ,[13] Approximation of contact problems with friction by reciprocal variational formulations. Proc. Roy. Soc. Edinburgh 98A (1984) 365-383. | Zbl 0547.73096
and ,[14] Numerical methods for unilateral problems in solid mechanics, Handbook of Numerical Analysis, P.G. Ciarlet and J.L. Lions Eds., Vol. 4, Part 2, North-Holland (1996) 313-485. | Zbl 0873.73079
, and ,[15] An algorithm for numerical realization of 3D contact problems with Coulomb friction. J. Comput. Appl. Math. 164-165 (2004) 387-408. | Zbl 1107.74328
, and ,[16] À propos d'approximation par éléments finis optimale pour les problèmes de contact unilatéral. C.R. Acad. Sci. Paris, Ser. I 326 (1998) 1233-1236. | Zbl 0914.73060
,[17] Contact problems in elasticity: a study of variational inequalities and finite element methods. SIAM, Philadelphia (1988). | MR 961258 | Zbl 0685.73002
and ,[18] An introduction to variational inequalities and their applications. Academic Press (1980). | MR 567696 | Zbl 0457.35001
and ,[19] Nonconforming mixed variational formulation and domain decomposition for unilateral problems. East-West J. Numer. Math. 7 (1999) 23-30. | Zbl 0923.73061
and ,