Mixed finite element approximation of 3D contact problems with given friction : error analysis and numerical realization
Haslinger, Jaroslav ; Sassi, Taoufik
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 38 (2004), p. 563-578 / Harvested from Numdam

This contribution deals with a mixed variational formulation of 3D contact problems with the simplest model involving friction. This formulation is based on a dualization of the set of admissible displacements and the regularization of the non-differentiable term. Displacements are approximated by piecewise linear elements while the respective dual variables by piecewise constant functions on a dual partition of the contact zone. The rate of convergence is established provided that the solution is smooth enough. The numerical realization of such problems will be discussed and results of a model example will be shown.

Publié le : 2004-01-01
DOI : https://doi.org/10.1051/m2an:2004026
Classification:  65N30,  74M15
@article{M2AN_2004__38_3_563_0,
     author = {Haslinger, Jaroslav and Sassi, Taoufik},
     title = {Mixed finite element approximation of 3D contact problems with given friction : error analysis and numerical realization},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {38},
     year = {2004},
     pages = {563-578},
     doi = {10.1051/m2an:2004026},
     mrnumber = {2075760},
     zbl = {1080.74046},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2004__38_3_563_0}
}
Haslinger, Jaroslav; Sassi, Taoufik. Mixed finite element approximation of 3D contact problems with given friction : error analysis and numerical realization. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 38 (2004) pp. 563-578. doi : 10.1051/m2an:2004026. http://gdmltest.u-ga.fr/item/M2AN_2004__38_3_563_0/

[1] R.A. Adams, Sobolev Spaces. Academic Press (1975). | MR 450957 | Zbl 0314.46030

[2] G. Amontons, Sur l'origine de la résistance dans les machines. Mémoires de l'Académie Royale (1699) 206-222.

[3] L. Baillet and T. Sassi, Méthodes d'éléments finis avec hybridisation frontière pour les problèmes de contact avec frottement. C.R. Acad. Sci. Paris, Ser. I 334 (2002) 917-922. | Zbl 1073.74047

[4] G. Bayada, M. Chambat, K. Lhalouani and T. Sassi, Éléments finis avec joints pour des problèmes de contact avec frottement de Coulomb non local. C.R. Acad. Sci. Paris, Ser. I 325 (1997) 1323-1328. | Zbl 0898.73059

[5] P.-G. Ciarlet, The finite element method for elliptic problems, Handbook of Numerical Analysis, P.G. Ciarlet and J.L. Lions Eds., Vol. 2, Part 1, North-Holland (1991) 17-352. | Zbl 0875.65086

[6] C.A. Coulomb, Théorie des machines simples. Mémoire de Mathématique et de Physique de l'Académie Royale 10 (1785) 145-173.

[7] Z. Dostál, Box constrained quadratic programming with proportioning and projections. SIAM J. Opt. 7 (1997) 871-887. | Zbl 0912.65052

[8] G. Duvaut and J.-L. Lions, Les inéquations en mécanique et en physique. Dunod, Paris (1972). | MR 464857 | Zbl 0298.73001

[9] I. Ekeland and R. Temam, Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976). | MR 463994 | Zbl 0322.90046

[10] R. Glowinski, Numerical methods for nonlinear variational problems. Springer, New York (1984). | MR 737005 | Zbl 0536.65054

[11] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Monogr. Studies Math., Pitman 24 (1985). | MR 775683 | Zbl 0695.35060

[12] J. Haslinger and I. Hlaváček, Approximation of the Signorini problem with friction by mixed finite element method, J. Math. Anal. Appl. 86 (1982) 99-122. | Zbl 0486.73099

[13] J. Haslinger and P.D. Panagiolopoulas, Approximation of contact problems with friction by reciprocal variational formulations. Proc. Roy. Soc. Edinburgh 98A (1984) 365-383. | Zbl 0547.73096

[14] J. Haslinger, I. Hlaváček and J. Nečas, Numerical methods for unilateral problems in solid mechanics, Handbook of Numerical Analysis, P.G. Ciarlet and J.L. Lions Eds., Vol. 4, Part 2, North-Holland (1996) 313-485. | Zbl 0873.73079

[15] J. Haslinger, R. Kučera and Z. Dostál, An algorithm for numerical realization of 3D contact problems with Coulomb friction. J. Comput. Appl. Math. 164-165 (2004) 387-408. | Zbl 1107.74328

[16] P. Hild, À propos d'approximation par éléments finis optimale pour les problèmes de contact unilatéral. C.R. Acad. Sci. Paris, Ser. I 326 (1998) 1233-1236. | Zbl 0914.73060

[17] N. Kikuchi and J.T. Oden, Contact problems in elasticity: a study of variational inequalities and finite element methods. SIAM, Philadelphia (1988). | MR 961258 | Zbl 0685.73002

[18] D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications. Academic Press (1980). | MR 567696 | Zbl 0457.35001

[19] K. Lhalouani and T. Sassi, Nonconforming mixed variational formulation and domain decomposition for unilateral problems. East-West J. Numer. Math. 7 (1999) 23-30. | Zbl 0923.73061