This paper concerns numerical methods for two-phase flows. The governing equations are the compressible 2-velocity, 2-pressure flow model. Pressure and velocity relaxation are included as source terms. Results obtained by a Godunov-type central scheme and a Roe-type upwind scheme are presented. Issues of preservation of pressure equilibrium, and positivity of the partial densities are addressed.
@article{M2AN_2004__38_3_477_0, author = {Karni, Smadar and Kirr, Eduard and Kurganov, Alexander and Petrova, Guergana}, title = {Compressible two-phase flows by central and upwind schemes}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {38}, year = {2004}, pages = {477-493}, doi = {10.1051/m2an:2004024}, mrnumber = {2075756}, zbl = {1079.76045}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2004__38_3_477_0} }
Karni, Smadar; Kirr, Eduard; Kurganov, Alexander; Petrova, Guergana. Compressible two-phase flows by central and upwind schemes. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 38 (2004) pp. 477-493. doi : 10.1051/m2an:2004024. http://gdmltest.u-ga.fr/item/M2AN_2004__38_3_477_0/
[1] Computations of compressible multifluids. J. Comput. Phys. 169 (2001) 594-623. | Zbl 1033.76029
and ,[2] Discrete equations for physical and numerical compressible multiphase flow mixtures. J. Comput. Phys. 186 (2003) 361-396. | Zbl 1072.76594
and ,[3] A numerical method using upwind schemes for the resolution of two-phase flows. J. Comput. Phys. 136 (1997) 272-288. | Zbl 0893.76052
, , , and ,[4] Mathematical modelling of tow-phase flow. Ann. Rev. Fluid Mech. 15 (1983) 261-291. | Zbl 0569.76104
,[5] On Godunov-type methods near low densities. J. Comput. Phys. 92 (1991) 273-295. | Zbl 0709.76102
, , and ,[6] Uniformly high-order accurate nonoscillatory schemes. I. SIAM J. Numer. Anal. 24 (1987) 279-309. | Zbl 0627.65102
and ,[7] Multi-component flow calculations by a consistent primitive algorithm. J. Comput. Phys. 112 (1994) 31-43. | Zbl 0811.76044
,[8] Central-upwind schemes for the Saint-Venant system. ESAIM: M2AN 36 (2002) 397-425. | Numdam | Zbl 1137.65398
and ,[9] Semi-discrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput. 23 (2001) 707-740. | Zbl 0998.65091
, and ,[10] Central schemes and contact discontinuities. ESAIM: M2AN 34 (2000) 1259-1275. | Numdam | Zbl 0972.65055
and ,[11] Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov's method. J. Comput. Phys. 32 (1979) 101-136. | Zbl 0939.76063
,[12] Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87 (1990) 408-463. | Zbl 0697.65068
and ,[13] Numerical benchmark tests, G.F. Hewitt, J.M. Delhay and N. Zuber Eds., Hemisphere, Washington, DC Multiphase Science and Technology 3 (1987).
,[14] Nonconservative hyperbolic systems and two-phase flows, International Conference on Differential Equations (Barcelona, 1991) World Sci. Publishing, River Edge, NJ 1, 2 (1993) 225-233. | Zbl 0938.35575
and ,[15] A nonconservative hyperbolic system modeling spray dynamics. I. Solution of the Riemann problem. Math. Models Methods Appl. Sci. 5 (1995) 297-333. | Zbl 0837.76089
and ,[16] Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43 (1981) 357-372. | Zbl 0474.65066
,[17] Fluctuations and signals - A framework for numerical evolution problems, in Numerical Methods for Fluid Dynamics, K.W. Morton and M.J. Baines Eds., Academic Press (1982) 219-257. | Zbl 0569.76072
,[18] Efficient construction and utilisation of approximate Riemann solutions, in Computing methods in applied sciences and engineering, VI (Versailles, 1983) North-Holland, Amsterdam (1984) 499-518. | Zbl 0558.76001
and ,[19] Finite volume approximations of two-phase fluid flows based on an approximate Roe-type Riemann solver. J. Comput. Phys. 121 (1995) 1-28. | Zbl 0834.76070
,[20] A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150 (1999) 425-467. | Zbl 0937.76053
and ,[21] Two-phase flow: models and methods. J. Comput. Phys. 56 (1984) 363-409. | Zbl 0596.76103
and ,[22] An approximate linearized Riemann solver for a two-fluid model. J. Comput. Phys. 124 (1996) 286-300. | Zbl 0847.76056
and ,