This paper studies the gradient flow of a regularized Mumford-Shah functional proposed by Ambrosio and Tortorelli (1990, 1992) for image segmentation, and adopted by Esedoglu and Shen (2002) for image inpainting. It is shown that the gradient flow with initial data possesses a global weak solution, and it has a unique global in time strong solution, which has at most finite number of point singularities in the space-time, when the initial data are in . A family of fully discrete approximation schemes using low order finite elements is proposed for the gradient flow. Convergence of a subsequence (resp. the whole sequence) of the numerical solutions to a weak solution (resp. the strong solution) of the gradient flow is established as the mesh sizes tend to zero, and optimal and suboptimal order error estimates, which depend on and only in low polynomial order, are derived for the proposed fully discrete schemes under the mesh relation . Numerical experiments are also presented to show effectiveness of the proposed numerical methods and to validate the theoretical analysis.
@article{M2AN_2004__38_2_291_0, author = {Feng, Xiaobing and Prohl, Andreas}, title = {Analysis of gradient flow of a regularized Mumford-Shah functional for image segmentation and image inpainting}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {38}, year = {2004}, pages = {291-320}, doi = {10.1051/m2an:2004014}, mrnumber = {2069148}, zbl = {1074.65106}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2004__38_2_291_0} }
Feng, Xiaobing; Prohl, Andreas. Analysis of gradient flow of a regularized Mumford-Shah functional for image segmentation and image inpainting. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 38 (2004) pp. 291-320. doi : 10.1051/m2an:2004014. http://gdmltest.u-ga.fr/item/M2AN_2004__38_2_291_0/
[1] Sobolev Spaces. Academic Press, New York (1975). | MR 450957 | Zbl 0314.46030
,[2] Approximation of functionals depending on jumps by elliptic functionals via -convergence. Comm. Pure Appl. Math. 43 (1990) 999-1036. | MR 1075076 | Zbl 0722.49020
and ,[3] On the approximation of functionals depending on jumps by quadratic, elliptic functionals. Boll. Un. Mat. Ital. 6-B (1992) 105-123. | MR 1164940 | Zbl 0776.49029
and ,[4] Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press (2000). | MR 1857292 | Zbl 0957.49001
, and ,[5] Convergence of a fully discrete finite element method for a degenerate parabolic system modeling nematic liquid crystals with variable degree of orientation, preprint. | Numdam | MR 2223509 | Zbl 1097.35082
, and ,[6] Discrete approximation of a free discontinuity problem. Numer. Funct. Anal. Optimiz. 15 (1994) 201-224. | MR 1272202 | Zbl 0806.49002
and ,[7] Visual reconstruction. MIT Press, Cambridge, MA (1987). | MR 919733
and ,[8] Image segmentation with a finite element method. ESAIM: M2AN 33 (1999) 229-244. | Numdam | MR 1700033 | Zbl 0947.65075
,[9] Approximation of free-discontinuity problems. Lect. Notes Math. 1694, Springer-Verlag (1998). | MR 1651773 | Zbl 0909.49001
,[10] Nonlocal approximation of the Mumford-Shah functional. Calc. Var. Partial Differential Equations 5 (1997) 293-322. | Zbl 0873.49009
and ,[11] The Mathematical Theory of Finite Element Methods, Second Edition, Springer-Verlag, New York (2001). | MR 1894376 | Zbl 0804.65101
and ,[12] Free energy of a nonuniform system I, Interfacial free energy. J. Chem. Phys. 28 (1958) 258-267.
and ,[13] Image segmentation by variational methods: Mumford-Shah functional and the discrete approximation. SIAM J. Appl. Math. 55 (1995) 827-863. | Zbl 0830.49015
,[14] Discrete approximation of the Mumford-Shah functional in dimension two. ESAIM: M2AN 33 (1999) 651-672. | Numdam | Zbl 0943.49011
and ,[15] Basic error estimates for elliptic problems, in Handbook of Numer. Anal. II, Elsevier Sciences Publishers (1991). | MR 1115237 | Zbl 0875.65086
,[16] An introduction to -convergence, Birkhäuser Boston, Boston, MA (1993). | MR 1201152 | Zbl 0816.49001
,[17] Existence theorem for a minimum problem with discontinuity set. Arch. Rat. Mech. Anal. 108 (1989) 195-218. | Zbl 0682.49002
, and ,[18] Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975) 842-850. | Zbl 0339.49005
and ,[19] An approximation result for the minimizers of the Mumford-Shah functional. Boll. Un. Mat. Ital. A 11 (1997). | MR 1438364 | Zbl 0873.49008
and ,[20] A second order splitting method for the Cahn-Hilliard equation. Numer. Math. 54 (1989) 575-590. | Zbl 0668.65097
, and ,[21] Digital inpainting based on the Mumford-Shah-Euler image model. European J. Appl. Math. 13 (2002) 353-370. | Zbl 1017.94505
and ,[22] Analysis of total variation flow and its finite element approximations. ESAIM: M2AN 37 (2003) 533-556. | Numdam | Zbl 1050.35004
and ,[23] On gradient flow of the Mumford-Shah functional. (in preparation).
and ,[24] Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Patten Anal. Mach. Intell. 6 (1984) 721-741. | Zbl 0573.62030
and ,[25] Numerical analysis of variational inequalities. North-Holland, New York. Stud. Math. Appl. 8 (1981). | MR 635927 | Zbl 0463.65046
, and ,[26] Gradient flow for the one-dimensional Mumford-Shah strategies. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 27 (1998) 145-193. | Numdam | Zbl 0931.49010
,[27] Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod (1969). | MR 259693 | Zbl 0189.40603
,[28] A variational method for the recovery of smooth boundaries. Im. Vis. Comp. 15 (1997) 705-712.
and ,[29] The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal. 98 (1987) 123-142. | Zbl 0616.76004
,[30] Un esempio di -convergenza. Boll. Un. Mat. Ital. B 14 (1977) 285-299. | Zbl 0356.49008
and ,[31] Variational Methods in Image Segmentation, Birkhäuser (1995). | MR 1321598
and ,[32] Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42 (1989) 577-685. | Zbl 0691.49036
and ,[33] Convergence past singularities for a fully discrete approximation of curvature-driven interfaces. SIAM J. Numer. Anal. 34 (1997) 490-512. | Zbl 0876.35053
and ,[34] Compact sets in the space . Ann. Mat. Pura Appl. 146 (1987) 65-96. | Zbl 0629.46031
,[35] Geometric evolution problems. IAS/Park City Math. Series 2 (1996) 259-339. | Zbl 0847.58012
,