We consider discontinuous as well as continuous Galerkin methods for the time discretization of a class of nonlinear parabolic equations. We show existence and local uniqueness and derive optimal order optimal regularity a priori error estimates. We establish the results in an abstract Hilbert space setting and apply them to a quasilinear parabolic equation.
@article{M2AN_2004__38_2_261_0, author = {Akrivis, Georgios and Makridakis, Charalambos}, title = {Galerkin time-stepping methods for nonlinear parabolic equations}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {38}, year = {2004}, pages = {261-289}, doi = {10.1051/m2an:2004013}, mrnumber = {2069147}, zbl = {1085.65094}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2004__38_2_261_0} }
Akrivis, Georgios; Makridakis, Charalambos. Galerkin time-stepping methods for nonlinear parabolic equations. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 38 (2004) pp. 261-289. doi : 10.1051/m2an:2004013. http://gdmltest.u-ga.fr/item/M2AN_2004__38_2_261_0/
[1] Linearly implicit methods for nonlinear parabolic equations. Math. Comp. 73 (2004) 613-635. | Zbl 1045.65079
and ,[2] Convergence of a time discrete Galerkin method for semilinear parabolic equations. Preprint (2002).
and ,[3] Implicit-explicit multistep finite element methods for nonlinear parabolic problems. Math. Comp. 67 (1998) 457-477. | Zbl 0896.65066
, and ,[4] Implicit-explicit multistep methods for quasilinear parabolic equations. Numer. Math. 82 (1999) 521-541. | Zbl 0936.65118
, and ,[5] Continuous finite elements in space and time for the heat equation. Math. Comp. 52 (1989) 255-274. | Zbl 0673.65070
and ,[6] Efficient higher order single step methods for parabolic problems: Part I, Math. Comp. 35 (1980) 655-677. | Zbl 0476.65072
and ,[7] Adaptive finite element methods for parabolic problems. I. A linear model problem. SIAM J. Numer. Anal. 28 (1991) 43-77. | Zbl 0732.65093
and ,[8] Adaptive finite element methods for parabolic problems. IV. Nonlinear problems. SIAM J. Numer. Anal. 32 (1995) 1729-1749. | Zbl 0835.65116
and ,[9] Adaptive finite element methods for parabolic problems. VI. Analytic semigroups. SIAM J. Numer. Anal. 35 (1998) 1315-1325. | Zbl 0909.65063
, and ,[10] The discontinuous Galerkin method for semilinear parabolic problems. RAIRO Modél. Math. Anal. Numér. 27 (1993) 35-54. | Numdam | Zbl 0768.65065
and ,[11] Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain. SIAM J. Numer. Anal. 15 (1978) 912-928. | Zbl 0434.65091
,[12] A space-time finite element method for the nonlinear Schrödinger equation: the discontinuous Galerkin method. Math. Comp. 67 (1998) 479-499. | Zbl 0896.65068
and ,[13] A space-time finite element method for the nonlinear Schrödinger equation: the continuous Galerkin method, SIAM J. Numer. Anal. 36 (1999) 1779-1807. | Zbl 0934.65110
and ,[14] Convergence of a continuous Galerkin method with mesh modification for nonlinear wave equations. Math. Comp. (to appear). | MR 2085403 | Zbl 1057.65066
and ,[15] On the stability of the discontinuous Galerkin method for the heat equation. SIAM J. Numer. Anal. 34 (1997) 389-401. | Zbl 0873.65095
and ,[16] A posteriori error estimates for a class of dissipative schemes for nonlinear evolution equations. Preprint (2002).
and ,[17] Interior maximum-norm estimates for finite element methods: Part II. Math. Comp. 64 (1995) 907-928. | Zbl 0826.65091
and ,[18] Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag, Berlin (1997). | MR 1479170 | Zbl 0884.65097
,