Domain decomposition techniques provide a flexible tool for the numerical approximation of partial differential equations. Here, we consider mortar techniques for quadratic finite elements in 3D with different Lagrange multiplier spaces. In particular, we focus on Lagrange multiplier spaces which yield optimal discretization schemes and a locally supported basis for the associated constrained mortar spaces in case of hexahedral triangulations. As a result, standard efficient iterative solvers as multigrid methods can be easily adapted to the nonconforming situation. We present the discretization errors in different norms for linear and quadratic mortar finite elements with different Lagrange multiplier spaces. Numerical results illustrate the performance of our approach.
@article{M2AN_2004__38_1_73_0, author = {Lamichhane, Bishnu P. and Wohlmuth, Barbara I.}, title = {A quasi-dual Lagrange multiplier space for serendipity mortar finite elements in 3D}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {38}, year = {2004}, pages = {73-92}, doi = {10.1051/m2an:2004004}, mrnumber = {2073931}, zbl = {1105.65352}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2004__38_1_73_0} }
Lamichhane, Bishnu P.; Wohlmuth, Barbara I. A quasi-dual Lagrange multiplier space for serendipity mortar finite elements in 3D. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 38 (2004) pp. 73-92. doi : 10.1051/m2an:2004004. http://gdmltest.u-ga.fr/item/M2AN_2004__38_1_73_0/
[1] UG - a flexible software toolbox for solving partial differential equations. Comput. Vis. Sci. 1 (1997) 27-40. | Zbl 0970.65129
, , , , , and ,[2] The mortar finite element method with Lagrange multipliers. Numer. Math. 84 (1999) 173-197. | Zbl 0944.65114
,[3] The mortar element method for three dimensional finite elements. RAIRO Modél. Math. Anal. Numér. 31 (1997) 289-302. | Numdam | Zbl 0868.65082
and ,[4] Coupling finite element and spectral methods: First results. Math. Comp. 54 (1990) 21-39. | Zbl 0685.65098
, and ,[5] Domain decomposition by the mortar element method, in Asymptotic and numerical methods for partial differential equations with critical parameters, H.G. Kaper and M. Garbey Eds., NATO ASI Series 39 (1993) 269-286. | Zbl 0799.65124
, and ,[6] A new nonconforming approach to domain decomposition: the mortar element method, in Nonlinear partial differential equations and their applications, H. Brezzi and J.-L. Lions Eds., Pitman, Paris (1994) 13-51. | Zbl 0797.65094
, and ,[7] Stability estimates of the mortar finite element method for 3-dimensional problems. East-West J. Numer. Math. 6 (1998) 249-264. | Zbl 0922.65072
and ,[8] A multigrid algorithm for the mortar finite element method. SIAM J. Numer. Anal. 37 (1999) 48-69. | Zbl 0942.65139
, and ,[9] The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York (1994). | MR 1278258 | Zbl 0804.65101
and ,[10] Mixed and hybrid finite element methods. Springer-Verlag, New York (1991). | MR 1115205 | Zbl 0788.73002
and ,[11] Error estimates for the three-field formulation with bubble stabilization. Math. Comp 70 (2001) 911-934. | Zbl 0970.65118
and ,[12] Stabilization techniques for domain decomposition methods with non-matching grids, in Proc. of the 9th International Conference on Domain Decomposition, P. Bjørstad, M. Espedal and D. Keyes Eds., Domain Decomposition Press, Bergen (1998) 1-11.
, , and ,[13] Error estimate for a stabilised domain decomposition method with nonmatching grids. Numer. Math. 90 (2002) 617-640. | Zbl 0996.65112
,[14] On the mortar finite element method. Ph.D. thesis, Texas A&M University (1999).
,[15] Multiplier spaces for the mortar finite element method in three dimensions. SIAM J. Numer. Anal. 39 (2000) 519-538. | Zbl 1006.65129
, , and ,[16] Higher order dual Lagrange multiplier spaces for mortar finite element discretizations. CALCOLO 39 (2002) 219-237. | Zbl 1168.65414 | Zbl pre02216988
and ,[17] Uniform hp convergence results for the mortar finite element method. Math. of Comput. 69 (2000) 521-546. | Zbl 0944.65113
and ,[18] Locally supported, piecewise polynomial biorthogonal wavelets on non-uniform meshes. Constr. Approx. 19 (2003) 477-508. | Zbl 1045.42028
,[19] The coupling of mixed and conforming finite element discretizations, in Proc. of the 10th International Conference on Domain Decomposition, J. Mandel, C. Farhat and X. Cai Eds., AMS, Contemp. Math. (1998) 546-553. | Zbl 0910.65091
and ,[20] Duality estimates and multigrid analysis for saddle point problems arising from mortar discretizations. SISC 24 (2003) 2163-2184. | Zbl 1045.65112
and ,[21] Discretization Methods and Iterative Solvers Based on Domain Decomposition. Lect. Notes Comput. Sci. 17, Springer, Heidelberg (2001). | MR 1820470 | Zbl 0966.65097
,[22] Multigrid methods based on the unconstrained product space arising from mortar finite element discretizations. SIAM J. Numer. Anal. 39 (2001) 192-213. | Zbl 0992.65142
and ,