A quasi-dual Lagrange multiplier space for serendipity mortar finite elements in 3D
Lamichhane, Bishnu P. ; Wohlmuth, Barbara I.
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 38 (2004), p. 73-92 / Harvested from Numdam

Domain decomposition techniques provide a flexible tool for the numerical approximation of partial differential equations. Here, we consider mortar techniques for quadratic finite elements in 3D with different Lagrange multiplier spaces. In particular, we focus on Lagrange multiplier spaces which yield optimal discretization schemes and a locally supported basis for the associated constrained mortar spaces in case of hexahedral triangulations. As a result, standard efficient iterative solvers as multigrid methods can be easily adapted to the nonconforming situation. We present the discretization errors in different norms for linear and quadratic mortar finite elements with different Lagrange multiplier spaces. Numerical results illustrate the performance of our approach.

Publié le : 2004-01-01
DOI : https://doi.org/10.1051/m2an:2004004
Classification:  35N55,  65N30
@article{M2AN_2004__38_1_73_0,
     author = {Lamichhane, Bishnu P. and Wohlmuth, Barbara I.},
     title = {A quasi-dual Lagrange multiplier space for serendipity mortar finite elements in 3D},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {38},
     year = {2004},
     pages = {73-92},
     doi = {10.1051/m2an:2004004},
     mrnumber = {2073931},
     zbl = {1105.65352},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2004__38_1_73_0}
}
Lamichhane, Bishnu P.; Wohlmuth, Barbara I. A quasi-dual Lagrange multiplier space for serendipity mortar finite elements in 3D. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 38 (2004) pp. 73-92. doi : 10.1051/m2an:2004004. http://gdmltest.u-ga.fr/item/M2AN_2004__38_1_73_0/

[1] P. Bastian, K. Birken, K. Johannsen, S. Lang, N. Neuß, H. Rentz-Reichert and C. Wieners, UG - a flexible software toolbox for solving partial differential equations. Comput. Vis. Sci. 1 (1997) 27-40. | Zbl 0970.65129

[2] F. Ben Belgacem, The mortar finite element method with Lagrange multipliers. Numer. Math. 84 (1999) 173-197. | Zbl 0944.65114

[3] F. Ben Belgacem and Y. Maday, The mortar element method for three dimensional finite elements. RAIRO Modél. Math. Anal. Numér. 31 (1997) 289-302. | Numdam | Zbl 0868.65082

[4] C. Bernardi, N. Debit and Y. Maday, Coupling finite element and spectral methods: First results. Math. Comp. 54 (1990) 21-39. | Zbl 0685.65098

[5] C. Bernardi, Y. Maday and A.T. Patera, Domain decomposition by the mortar element method, in Asymptotic and numerical methods for partial differential equations with critical parameters, H.G. Kaper and M. Garbey Eds., NATO ASI Series 39 (1993) 269-286. | Zbl 0799.65124

[6] C. Bernardi, Y. Maday and A.T. Patera, A new nonconforming approach to domain decomposition: the mortar element method, in Nonlinear partial differential equations and their applications, H. Brezzi and J.-L. Lions Eds., Pitman, Paris (1994) 13-51. | Zbl 0797.65094

[7] D. Braess and W. Dahmen, Stability estimates of the mortar finite element method for 3-dimensional problems. East-West J. Numer. Math. 6 (1998) 249-264. | Zbl 0922.65072

[8] D. Braess, W. Dahmen and C. Wieners, A multigrid algorithm for the mortar finite element method. SIAM J. Numer. Anal. 37 (1999) 48-69. | Zbl 0942.65139

[9] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York (1994). | MR 1278258 | Zbl 0804.65101

[10] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer-Verlag, New York (1991). | MR 1115205 | Zbl 0788.73002

[11] F. Brezzi and D. Marini, Error estimates for the three-field formulation with bubble stabilization. Math. Comp 70 (2001) 911-934. | Zbl 0970.65118

[12] F. Brezzi, L. Franca, D. Marini and A. Russo, Stabilization techniques for domain decomposition methods with non-matching grids, in Proc. of the 9th International Conference on Domain Decomposition, P. Bjørstad, M. Espedal and D. Keyes Eds., Domain Decomposition Press, Bergen (1998) 1-11.

[13] A. Buffa, Error estimate for a stabilised domain decomposition method with nonmatching grids. Numer. Math. 90 (2002) 617-640. | Zbl 0996.65112

[14] J. Gopalakrishnan, On the mortar finite element method. Ph.D. thesis, Texas A&M University (1999).

[15] C. Kim, R.D. Lazarov, J.E. Pasciak and P.S. Vassilevski, Multiplier spaces for the mortar finite element method in three dimensions. SIAM J. Numer. Anal. 39 (2000) 519-538. | Zbl 1006.65129

[16] B.P. Lamichhane and B.I. Wohlmuth, Higher order dual Lagrange multiplier spaces for mortar finite element discretizations. CALCOLO 39 (2002) 219-237. | Zbl 1168.65414 | Zbl pre02216988

[17] P. Seshaiyer and M. Suri, Uniform hp convergence results for the mortar finite element method. Math. of Comput. 69 (2000) 521-546. | Zbl 0944.65113

[18] R. Stevenson, Locally supported, piecewise polynomial biorthogonal wavelets on non-uniform meshes. Constr. Approx. 19 (2003) 477-508. | Zbl 1045.42028

[19] C. Wieners and B.I. Wohlmuth, The coupling of mixed and conforming finite element discretizations, in Proc. of the 10th International Conference on Domain Decomposition, J. Mandel, C. Farhat and X. Cai Eds., AMS, Contemp. Math. (1998) 546-553. | Zbl 0910.65091

[20] C. Wieners and B.I. Wohlmuth, Duality estimates and multigrid analysis for saddle point problems arising from mortar discretizations. SISC 24 (2003) 2163-2184. | Zbl 1045.65112

[21] B.I. Wohlmuth, Discretization Methods and Iterative Solvers Based on Domain Decomposition. Lect. Notes Comput. Sci. 17, Springer, Heidelberg (2001). | MR 1820470 | Zbl 0966.65097

[22] B.I. Wohlmuth and R.H. Krause, Multigrid methods based on the unconstrained product space arising from mortar finite element discretizations. SIAM J. Numer. Anal. 39 (2001) 192-213. | Zbl 0992.65142