Arbitrage-free prices of European contracts on risky assets whose log-returns are modelled by Lévy processes satisfy a parabolic partial integro-differential equation (PIDE) . This PIDE is localized to bounded domains and the error due to this localization is estimated. The localized PIDE is discretized by the -scheme in time and a wavelet Galerkin method with degrees of freedom in log-price space. The dense matrix for can be replaced by a sparse matrix in the wavelet basis, and the linear systems in each implicit time step are solved approximatively with GMRES in linear complexity. The total work of the algorithm for time steps is bounded by operations and memory. The deterministic algorithm gives optimal convergence rates (up to logarithmic terms) for the computed solution in the same complexity as finite difference approximations of the standard Black-Scholes equation. Computational examples for various Lévy price processes are presented.
@article{M2AN_2004__38_1_37_0, author = {Matache, Ana-Maria and Petersdorff, Tobias Von and Schwab, Christoph}, title = {Fast deterministic pricing of options on L\'evy driven assets}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {38}, year = {2004}, pages = {37-71}, doi = {10.1051/m2an:2004003}, mrnumber = {2073930}, zbl = {1072.60052}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2004__38_1_37_0} }
Matache, Ana-Maria; Petersdorff, Tobias Von; Schwab, Christoph. Fast deterministic pricing of options on Lévy driven assets. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 38 (2004) pp. 37-71. doi : 10.1051/m2an:2004003. http://gdmltest.u-ga.fr/item/M2AN_2004__38_1_37_0/
[1] Sobolev Spaces. Academic Press, New York (1978). | MR 450957 | Zbl 1098.46001
,[2] Linear and Quasilinear Parabolic Problems, Vol. I: Abstract Linear Theory, Monographs Math. Birkhäuser, Basel 89 (1995). | MR 1345385 | Zbl 0819.35001
,[3] Exponentially decreasing distributions for the logarithm of particle size. Proc. Roy. Soc. London A 353 (1977) 401-419.
,[4] Normal inverse Gaussian distributions and stochastic volatility modelling. Scand. J. Statis. 24 (1997) 1-14. | Zbl 0934.62109
,[5] Non-Gaussian Ornstein-Uhlenbeck based models and some of their uses in financial economics. J. Roy. Stat. Soc. B 63 (2001) 167-241. | Zbl 0983.60028
and ,[6] Impulse control and quasi-variational inequalities. Gauthier-Villars, Paris (1984). | MR 756234
and ,[7] Lévy processes. Cambridge University Press (1996). | MR 1406564 | Zbl 0861.60003
,[8] The Pricing of Options and Corporate Liabilities. J. Political Economy 81 (1973) 637-654. | Zbl 1092.91524
and ,[9] Barrier options and touch-and-out options under regular Lévy processes of exponential type. Ann. Appl. Probab. 12 (2002) 1261-1298. | Zbl 1015.60036
and ,[10] Option pricing for truncated Lévy processes. Int. J. Theor. Appl. Finance 3 (2000) 549-552. | Zbl 0973.91037
and ,[11] Option valuation using the FFT. J. Comp. Finance 2 (1999) 61-73.
and ,[12] The fine structure of asset returns: an empirical investigation. J. Business 75 (2002) 305-332.
, , and ,[13] Pricing contingent claims on stocks driven by Lévy processes. Ann. Appl. Probab. 9 (1999) 504-528. | Zbl 1054.91033
,[14] Wavelet methods for operator equations, P.G. Ciarlet and J.L. Lions Eds., Elsevier, Amsterdam, Handb. Numer. Anal. VII (2000).
,[15] Financial modelling with jump processes. Chapman and Hall/CRC Press (2003). | MR 2042661 | Zbl 1052.91043
and ,[16] The variance-optimal martingale measure for continuous processes. Bernoulli 2 (1996) 81-105. | Zbl 0849.60042
and ,[17] Exponential hedging and entropic penalties. Math. Finance 12 (2002) 99-123. | Zbl 1072.91019
, , , , and ,[18] Application of generalized hyperbolic Lévy motions to finance, in Lévy Processes: Theory and Applications, O.E. Barndorff-Nielsen, T. Mikosch and S. Resnick Eds., Birkhäuser (2001) 319-337. | Zbl 0982.60045
,[19] Hedging of contingent claims under incomplete information, in Applied Stochastic Analysis, M.H.A. Davis and R.J. Elliot Eds., Gordon and Breach New York (1991) 389-414. | Zbl 0738.90007
and ,[20] Limit Theorems for Stochastic Processes. Springer-Verlag, Berlin (1987). | MR 959133 | Zbl 0635.60021
and ,[21] Variational inequalities and the pricing of American options. Acta Appl. Math. 21 (1990) 263-289. | Zbl 0714.90004
, and ,[22] Far field boundary conditions for Black-Scholes equations. SIAM J. Numer. Anal. 38 (2000) 1357-1368. | Zbl 0990.35013
and ,[23] Methods of Mathematical Finance. Springer-Verlag (1999). | MR 1640352 | Zbl 0941.91032
and ,[24] A jump diffusion model for option pricing. Mange. Sci. 48 (2002) 1086-1101.
,[25] Introduction to Stochastic Calculus Applied to Finance. Chapman & Hall (1997). | Zbl pre05181830
and ,[26] Non-homogeneous boundary value problems and applications. Springer-Verlag, Berlin (1972). | Zbl 0223.35039
and ,[27] The variance gamma (V.G.) model for share market returns. J. Business 63 (1990) 511-524.
and ,[28] The variance gamma process and option pricing. Eur. Finance Rev. 2 (1998) 79-105. | Zbl 0937.91052
, and ,[29] Fast deterministic pricing of options on Lévy driven assets. Report 2002-11, Seminar for Applied Mathematics, ETH Zürich. http://www.sam.math.ethz.ch/reports/details/include.shtml?2002/2002-11.html
, and ,[30] Wavelet Galerkin pricing of American options on Lévy driven assets. Research Report 2003-06, Seminar for Applied Mathematics, ETH Zürich, http://www.sam.math.ethz.ch/reports/details/include.shtml?2003/2003-06.html | Zbl 1134.91450
, and ,[31] Option pricing when the underlying stocks are discontinuous. J. Financ. Econ. 5 (1976) 125-144. | Zbl 1131.91344
,[32] Backward stochastic differential equations and Feynman-Kac formula for Lévy processes, with applications in finance. Bernoulli 7 (2001) 761-776. | Zbl 0991.60045
and ,[33] Semigroups of linear operators and applications to partial differential equations. Appl. Math. Sci. Springer-Verlag, New York 44 (1983). | MR 710486 | Zbl 0516.47023
,[34] Fully discrete multiscale Galerkin BEM, in Multiresolution Analysis and Partial Differential Equations, W. Dahmen, P. Kurdila and P. Oswald Eds., Academic Press, New York, Wavelet Anal. Appl. 6 (1997) 287-346.
and ,[35] The Generalized Hyperbolic Model: Estimation, Financial Derivatives, and Risk Measures. Ph.D. thesis Albert-Ludwigs-Universität Freiburg i.Br. (1999). | Zbl 0944.91026
,[36] Stochastic Integration and Differential Equations. Springer-Verlag (1990). | MR 1037262 | Zbl 0694.60047
,[37] Lévy processes in Finance: Theory, Numerics, and Empirical Facts. Ph.D. thesis Albert-Ludwigs-Universität Freiburg i.Br. (2000). | Zbl 0966.60044
,[38] Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press (1999). | MR 1739520 | Zbl 0973.60001
,[39] -discontinuous Galerkin time-stepping for parabolic problems. C.R. Acad. Sci. Paris 333 (2001) 1121-1126. | Zbl 0993.65108
and ,[40] Lévy Processes in Finance. Wiley Ser. Probab. Stat., Wiley Publ. (2003).
,[41] Wavelet-discretizations of parabolic integro-differential equations. SIAM J. Numer. Anal. 41 (2003) 159-180. | Zbl 1050.65134
and ,[42] Numerical solution of parabolic equations in high dimensions. Report NI03013-CPD, Isaac Newton Institute for the Mathematical Sciences, Cambridge, UK (2003), http://www.newton.cam.ac.uk/preprints2003.html, ESAIM: M2AN 38 (2004) 93-127. | Numdam | Zbl 1083.65095
and ,[43] Analyse Numerique des Options Américaines dans un Modèle de Diffusion avec Sauts. Ph.D. thesis, École Normale des Ponts et Chaussées (1994).
,