A posteriori error control for the Allen-Cahn problem : circumventing Gronwall's inequality
Kessler, Daniel ; Nochetto, Ricardo H. ; Schmidt, Alfred
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 38 (2004), p. 129-142 / Harvested from Numdam

Phase-field models, the simplest of which is Allen-Cahn’s problem, are characterized by a small parameter ε that dictates the interface thickness. These models naturally call for mesh adaptation techniques, which rely on a posteriori error control. However, their error analysis usually deals with the underlying non-monotone nonlinearity via a Gronwall argument which leads to an exponential dependence on ε -2 . Using an energy argument combined with a topological continuation argument and a spectral estimate, we establish an a posteriori error control result with only a low order polynomial dependence in ε -1 . Our result is applicable to any conforming discretization technique that allows for a posteriori residual estimation. Residual estimators for an adaptive finite element scheme are derived to illustrate the theory.

Publié le : 2004-01-01
DOI : https://doi.org/10.1051/m2an:2004006
Classification:  65M15,  65M50,  65M60
@article{M2AN_2004__38_1_129_0,
     author = {Kessler, Daniel and Nochetto, Ricardo H. and Schmidt, Alfred},
     title = {A posteriori error control for the Allen-Cahn problem : circumventing Gronwall's inequality},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {38},
     year = {2004},
     pages = {129-142},
     doi = {10.1051/m2an:2004006},
     zbl = {1075.65117},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2004__38_1_129_0}
}
Kessler, Daniel; Nochetto, Ricardo H.; Schmidt, Alfred. A posteriori error control for the Allen-Cahn problem : circumventing Gronwall's inequality. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 38 (2004) pp. 129-142. doi : 10.1051/m2an:2004006. http://gdmltest.u-ga.fr/item/M2AN_2004__38_1_129_0/

[1] S.M. Allen and J.W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27 (1979) 1085-1095.

[2] H. Brézis, Analyse fonctionnelle. Dunod, Paris (1999). | Zbl 0511.46001

[3] G. Caginalp and X. Chen, Convergence of the phase-field model to its sharp interface limits. Euro. J. Appl. Math. 9 (1998) 417-445. | Zbl 0930.35024

[4] X. Chen, Spectrum for the Allen-Cahn, Cahn-Hilliard, and phase-field equations for generic interfaces. Comm. Partial Differantial Equations 19 (1994) 1371-1395. | Zbl 0811.35098

[5] Ph. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér 9 (1975) 77-84. | Numdam | Zbl 0368.65008

[6] R. Dautrey and J.-L. Lions, Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques. Masson (1988). | Zbl 0642.35001

[7] P. De Mottoni and M. Schatzman, Geometrical evolution of developed interfaces. Trans. Amer. Math. Soc. 347 (1995) 1533-1589. | Zbl 0840.35010

[8] K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems iv: Nonlinear problems. SIAM J. Numer. Anal. 32 (1995) 1729-1749. | Zbl 0835.65116

[9] X. Feng and A. Prohl, Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows. Num. Math. 94 (2003) 33-65. | Zbl 1029.65093

[10] Ch. Makridakis and R.H. Nochetto, Elliptic reconstruction and a posteriori error estimates for parabolic problems. SIAM J. Numer. Anal. 41 (2003) 1585-1594. | Zbl 1052.65088

[11] J. Rappaz and J.-F. Scheid, Existence of solutions to a phase-field model for the solidification process of a binary alloy. Math. Methods Appl. Sci. 23 (2000) 491-513. | Zbl 0964.35026

[12] A. Schmidt and K. Siebert, ALBERT: An adaptive hierarchical finite element toolbox. Preprint 06/2000, Freiburg edition. | MR 1784069