We present a domain decomposition theory on an interface problem for the linear transport equation between a diffusive and a non-diffusive region. To leading order, i.e. up to an error of the order of the mean free path in the diffusive region, the solution in the non-diffusive region is independent of the density in the diffusive region. However, the diffusive and the non-diffusive regions are coupled at the interface at the next order of approximation. In particular, our algorithm avoids iterating the diffusion and transport solutions as is done in most other methods - see for example Bal-Maday (2002). Our analysis is based instead on an accurate description of the boundary layer at the interface matching the phase-space density of particles leaving the non-diffusive region to the bulk density that solves the diffusion equation.
@article{M2AN_2003__37_6_869_0, author = {Golse, Fran\c cois and Jin, Shi and Levermore, C. David}, title = {A domain decomposition analysis for a two-scale linear transport problem}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {37}, year = {2003}, pages = {869-892}, doi = {10.1051/m2an:2003059}, mrnumber = {2026400}, zbl = {1078.65125}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2003__37_6_869_0} }
Golse, François; Jin, Shi; Levermore, C. David. A domain decomposition analysis for a two-scale linear transport problem. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 37 (2003) pp. 869-892. doi : 10.1051/m2an:2003059. http://gdmltest.u-ga.fr/item/M2AN_2003__37_6_869_0/
[1] Coupling of Transport and Diffusion Models in Linear Transport Theory. ESAIM: M2AN 36 (2002) 69-86. | Numdam | Zbl 0995.45008
and ,[2] Diffusion approximation and computation of critical size. Trans. Amer. Math. Soc. 284 (1984) 617-649. | Zbl 0508.60067
, and ,[3] Boundary layers and homogenization of transport processes. Publ. Res. Inst. Math. Sci. 15 (1979) 53-157. | Zbl 0408.60100
, and ,[4] Coupling Boltzmann and Euler equations without overlapping, in Domain decomposition methods in science and engineering (Como, 1992). Amer. Math. Soc., Providence, RI, Contemp. Math. 157 (1994) 377-398. | Zbl 0796.76063
, , and ,[5] Diffusion limit of the Lorentz model: asymptotic preserving schemes. ESAIM: M2AN 36 (2002) 631-655. | Numdam | Zbl 1062.82050
, , and ,[6] Radiative Transfer. Dover, New York (1960). | MR 111583
,[7] Analyse Mathèmatique et Calcul Numérique pour les Sciences et les Techniques. Collection du Commissariat à l'Énergie Atomique: Série Scientifique, Masson, Paris (1985). | Zbl 0642.35001
and ,[8] Kinetic boundary layers and fluid-kinetic coupling in semiconductors. Transport Theory Statist. Phys. 28 (1999) 31-55. | Zbl 0942.35162
and ,[9] Kinetic fluid coupling in the field of the atomic vapor laser isotopic separation: numerical results in the case of a mono-species perfect gas, presented at the 23rd International Symposium on Rarefied Gas Dynamics, Whistler (British Columbia), July (2002).
,[10] Applications of the Boltzmann equation within the context of upper atmosphere vehicle aerodynamics. Comput. Methods Appl. Mech. Engrg. 75 (1989) 299-316. | MR 1035753 | Zbl 0687.76078
,[11] Knudsen layers from a computational viewpoint. Transport Theory Statist. Phys. 21 (1992) 211-236. | Zbl 0754.76066
,[12] The convergence of numerical transfer schemes in diffusive regimes, I. The dicrete-ordinate method. SIAM J. Numer. Anal. 36 (1999) 1333-1369. | Zbl 1053.82030
, and ,[13] Numerical modeling of gas flows in the transition between rarefied and continuum regimes. Numerical flow simulation I, (Marseille, 1997). Vieweg, Braunschweig, Notes Numer. Fluid Mech. 66 (1998) 222-241.
, , and ,[14] The discrete-ordinate method in diffusive regimes. Transport Theory Statist. Phys. 20 (1991) 413-439. | Zbl 0760.65125
and ,[15] Fully discrete numerical transfer in diffusive regimes. Transport Theory Statist. Phys. 22 (1993) 739-791. | Zbl 0818.65141
and ,[16] Uniformly accurate diffusive relaxation schemes for multiscale transport equations. SIAM J. Numer. Anal. 38 (2000) 913-936. | MR 1781209 | Zbl 0976.65091
, and ,[17] Convergence of alternating domain decomposition schemes for kinetic and aerodynamic equations. Math. Methods Appl. Sci. 18 (1995) 649-670. | Zbl 0827.76057
,[18] Asymptotic-induced domain decomposition methods for kinetic and drift-diffusion semiconductor equations. SIAM J. Sci. Comput. 19 (1998) 2032-2050. | Zbl 0918.65090
,[19] An asymptotic-induced scheme for nonstationary transport equations in the diffusive limit. SIAM J. Numer. Anal. 35 (1998) 1073-1094. | MR 1619859 | Zbl 0918.65091
,[20] Transition from kinetic theory to macroscopic fluid equations: a problem for domain decomposition and a source for new algorithm. Transport Theory Statist. Phys. 29 (2000) 93-106. | Zbl 0956.82023
, and ,[21] Boundary layers and domain decomposition for radiative heat transfer and diffusion equations: applications to glass manufacturing process. European J. Appl. Math. 9 (1998) 351-372. | Zbl 0927.45004
and ,[22] Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes. J. Comput. Phys. 69 (1987) 283-324. | Zbl 0627.65146
, and ,[23] On the spectrum of an unsymmetric operator arising in the transport theory of neutrons. Comm. Pure Appl. Math. 8 (1955) 217-234. | Zbl 0064.23004
and ,[24] Coupling Boltzmann and Navier-Stokes equations by half fluxes. J. Comput. Phys. 136 (1997) 51-67. | Zbl 0890.76042
and ,[25] Convergence analysis of domain decomposition algorithms with full overlapping for the advection-diffusion problems. Math. Comp. 68 (1999) 585-606. | Zbl 1043.65112
and ,[26] New models for the solution of intermediate regimes in transport theory and radiative transfer: existence theory, positivity, asymptotic analysis, and approximations. J. Statist. Phys. 104 (2001) 291-325. | Zbl 1126.82334
,[27] Über eine Klasse singulärer Integralgleichungen, Sitzber. Preuss. Akad. Wiss., Sitzung der phys.-math. Klasse, Berlin (1931) 696-706. | Zbl 0003.30701
and ,