In this work we introduce an accurate solver for the Shallow Water Equations with source terms. This scheme does not need any kind of entropy correction to avoid instabilities near critical points. The scheme also solves the non-homogeneous case, in such a way that all equilibria are computed at least with second order accuracy. We perform several tests for relevant flows showing the performance of our scheme.
@article{M2AN_2003__37_5_755_0, author = {Rebollo, Tom\'as Chac\'on and Delgado, Antonio Dom\'\i nguez and Fern\'andez Nieto, Enrique D.}, title = {An entropy-correction free solver for non-homogeneous shallow water equations}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {37}, year = {2003}, pages = {755-772}, doi = {10.1051/m2an:2003043}, mrnumber = {2020863}, zbl = {1033.76032}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2003__37_5_755_0} }
Rebollo, Tomás Chacón; Delgado, Antonio Domínguez; Fernández Nieto, Enrique D. An entropy-correction free solver for non-homogeneous shallow water equations. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 37 (2003) pp. 755-772. doi : 10.1051/m2an:2003043. http://gdmltest.u-ga.fr/item/M2AN_2003__37_5_755_0/
[1] Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes. Comput. Methods Appl. Mech. Engrg. 155 (1998) 49-72. | Zbl 0961.76047
, , and ,[2] Upwind Methods for Hyperbolic Conservation Laws with Source Terms. Comput. & Fluids 23 (1994) 1049-1071. | Zbl 0816.76052
and ,[3] An introduction to finite volume methods for hyperbolic systems of conservation laws with source, Actas Ecole CEA - EDF - INRIA, Free surface geophysical flows, 7-10 Octobre, INRIA Rocquencourt, France (2002).
,[4] A non-parameterized entropy correction for Roe's approximate Riemann solver. Numer. Math. 73 (1996) 169-208. | Zbl 0861.65073
and ,[5] Simulación bidimensional de flujos hidrodinámicos transitorios en gemotrías irregulares. Ph.D. thesis Universidad de Zaragoza (2000).
,[6] A flux-splitting solver for shallow watter equations with source terms. Int. J. Num. Methods Fluids 42 (2003) 23-55. | Zbl 1033.76033
, and ,[7] A family of stable numerical solvers for Shallow Water equations with source terms. Comput. Methods Appl. Mech. Engrg. 192 (2003) 203-225. | Zbl 1083.76557
, and ,[8] Some approximate Godunov schemes to compute shallow-water equations with topography. Comput. & Fluids 32 (2003) 479-513. | Zbl 1084.76540
, and ,[9] Hyperbolic systems of conservation laws. Math. Appl. (1991). | MR 1304494 | Zbl 0768.35059
and ,[10] Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer, Verlag (1996). | MR 1410987 | Zbl 0860.65075
and ,[11] On upstream differencing and Godunov-type scheme for hyperbolic conservation laws. SIAM Rev. 25 (1983) 35. | MR 693713 | Zbl 0565.65051
, and ,[12] A steady-state capturing method for hyperbolic systems with geometrical source terms. M2AN Math. Model. Numer. Anal. 35 (2001) 631-645. | Numdam | Zbl 1001.35083
,[13] Central-upwind schemes for the saint-venant system. M2AN Math. Model. Numer. Anal. 36 (2002) 397-425. | Numdam | Zbl 1137.65398
and ,[14] New High-Resolution Central Schemes for Nonlinear Conservations Laws and Convection-Diffusion Equations. J. Comput. Phys. 160 (2000) 214-282. | Zbl 0987.65085
and ,[15] Le Veque and H.C. Yee, A study of numerical methods for hyperbolic conservation laws with stiff source terms. J. Comput. Phys. 86 (1990) 187-210. | Zbl 0682.76053
[16] Le Veque, Balancing Source Terms and Flux Gradients in High-Resolution Godunov Methods: The Quasi-Steady Wave-Propagation Algorithm. J. Comp. Phys. 146 (1998) 346-365. | Zbl 0931.76059
[17] A kinetic scheme for the Saint-Venant system with a source term. Calcolo 38 (2001) 201-231. | Zbl 1008.65066
and ,[18] Upwind differencing schemes for hyperbolic conservation laws with source terms. Nonlinear Hyperbolic Problems, C. Carraso, P.A. Raviart and D. Serre, Eds., Springer-Verlag, Lecture Notes in Math. 1270 (1986) 41-51. | Zbl 0626.65086
,[19] E F. Toro., Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer (1997). | MR 1474503 | Zbl 0801.76062
[20] Estudio de esquemas descentrados para su aplicacion a las leyes de conservación hiperbólicas con términos fuente. Ph.D. thesis, Universidad de Santiago de Compostela (1994).
,[21] Improved Treatment of Source Terms in Upwind Schemes for the Shallow Water Equations in Channels with Irregular Geometry. J. Comp. Phys. 148 (1999) 497-526. | Zbl 0931.76055
,[22] High-order schemes and entropy condition for nonlinear hyperbolic systems of conservations laws. Math. Comp. 50 (1988) 53-73. | Zbl 0644.65058
,[23] The Surface Gradient Method for the Treatment of Source Terms in the Sallow-Water Equations. J. Comput. Phys. 168 (2001) 1-25. | Zbl 1074.86500
, , and ,