A three dimensional finite element method for biological active soft tissue formulation in cylindrical polar coordinates
Bourdarias, Christian ; Gerbi, Stéphane ; Ohayon, Jacques
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 37 (2003), p. 725-739 / Harvested from Numdam

A hyperelastic constitutive law, for use in anatomically accurate finite element models of living structures, is suggested for the passive and the active mechanical properties of incompressible biological tissues. This law considers the passive and active states as a same hyperelastic continuum medium, and uses an activation function in order to describe the whole contraction phase. The variational and the FE formulations are also presented, and the FE code has been validated and applied to describe the biomechanical behavior of a thick-walled anisotropic cylinder under different active loading conditions.

Publié le : 2003-01-01
DOI : https://doi.org/10.1051/m2an:2003044
Classification:  65M60,  92C10,  92C50,  74L15,  74S05,  74B20
@article{M2AN_2003__37_4_725_0,
     author = {Bourdarias, Christian and Gerbi, St\'ephane and Ohayon, Jacques},
     title = {A three dimensional finite element method for biological active soft tissue formulation in cylindrical polar coordinates},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {37},
     year = {2003},
     pages = {725-739},
     doi = {10.1051/m2an:2003044},
     mrnumber = {2018440},
     zbl = {1070.74045},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2003__37_4_725_0}
}
Bourdarias, Christian; Gerbi, Stéphane; Ohayon, Jacques. A three dimensional finite element method for biological active soft tissue formulation in cylindrical polar coordinates. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 37 (2003) pp. 725-739. doi : 10.1051/m2an:2003044. http://gdmltest.u-ga.fr/item/M2AN_2003__37_4_725_0/

[1] W.M. Bayliss, On the local reaction of the arterial wall to changes of internal pressure. J. Physiol. London 28 (1902) 220-231.

[2] J. Berntsen, T.O. Espelid and A. Genz, Algorithm 698: DCUHRE: An adaptive multidimensional integration routine for a vector of integrals. ACM Trans. Math. Softw. 17 (1991) 452-456. | Zbl 0900.65053

[3] P.H.M. Bovendeerd, T. Arts, J.M. Huyghe, D.H. Van Campen and R.S. Reneman, Dependance of local left ventricular wall mechanics on myocardial fiber orientation: a model study. J. Biomech. 25 (1992) 1129-1140.

[4] P.G. Ciarlet, The finite element method for elliptic problems, Vol. 4 of Studies in Mathematics and its Applications. North-Holland, Amsterdam-New York (1980). | MR 608971 | Zbl 0511.65078

[5] K.D. Costa, P.J. Hunter, J.S. Wayne, L.K. Waldman, J.M. Guccione and A.D. Mcculloch, A three-dimensional finite element method for large elastic deformations of ventricular myocardium: Part I. Cylindrical and spherical polar coordinates. ASME J. Biomech. Eng. 118 (1996) 452-463.

[6] R. Glowinski and P. Letallec, Augmented lagrangian and operator-splitting methods in nonlinear mechanics. SIAM, Philadelphia, PA (1989). | MR 1060954 | Zbl 0698.73001

[7] D.H.S. Lin and F.C.P. Yin, A multiaxial constitutive law for mammalian left ventricular myocardium in steady-state barium contracture or tetanus. J. Biomech. Eng. 120 (1998) 504-517.

[8] L.E. Malvern, Introduction to the mechanics of a continuous medium. Prentice-Hall (1969).

[9] A.D. Mcculloch, L.K. Waldman, J. Rogers and J. Guccione, Large scale finite element analysis of the beating heart. Crit. Rev. Biomed. Eng. 20 (1992) 427-449.

[10] J.J. Morge, B.S. Garbow and K.E. Hillstrom, User Guide for MINPACK-1. Technical Report ANL-80-74, Argonne National Laboratory (March 1980).

[11] J.T. Oden, Finite elements of nonlinear continua. McGraw-Hill, New York (1972). | Zbl 0235.73038

[12] J. Ohayon and R.S. Chadwick, Effects of collagen microstructure on the mechanics of the left ventricle. Biophys. J. 54 (1988) 1077-1088.

[13] M.J.D. Powell, A hybrid method for nonlinear equations, in Numerical methods for nonlinear algebraic equations, P. Rabinowitz Ed. Gordon and Breach, New York (1970) 87-114. | Zbl 0277.65028

[14] A. Quarteroni and A. Valli, Numerical approximation of partial differential equations, Vol. 23 of Springer Series in Computational Mathematics. Springer Verlag, Berlin (1994). | MR 1299729 | Zbl 0803.65088

[15] G.M. Rubanyi, Mechanoreception by the vascular wall. Futura Publishing Company, Inc. (1993).

[16] L.A. Taber, On a nonlinear theory for muscle shells: Part II. Application to the beating left ventricle. J. Biomech. Eng. 113 (1991) 63-71.

[17] P. Teppaz, J. Ohayon and R. Herbin, Interaction fluide-structure active : écoulement artériel. C.R. Acad. Sci. Paris 324 (1997) 37-45. | Zbl 0873.76099

[18] T.P. Usyk, Omens J.H. and A.D. Mcculloch, Regional septal dysfunction in a three-dimensional computational model of focal myofiber dissaray. Am. J. Physiol. Heart Circ. Physiol. 281 (2001) 506-514.

[19] J. Zhang and C. Xu, A class of indefinite dogleg path mehods for unconstrained minimization. SIAM J. Optim. 9 (1999) 646-667. | Zbl 0953.90053