We derive a constitutive law for the myocardium from the description of both the geometrical arrangement of cardiomyocytes and their individual mechanical behaviour. We model a set of cardiomyocytes by a quasiperiodic discrete lattice of elastic bars interacting by means of moments. We work in a large displacement framework and we use a discrete homogenization technique. The macroscopic constitutive law is obtained through the resolution of a nonlinear self-equilibrum system of the discrete lattice reference cell.
@article{M2AN_2003__37_4_681_0, author = {Caillerie, Denis and Mourad, Ayman and Raoult, Annie}, title = {Cell-to-muscle homogenization. Application to a constitutive law for the myocardium}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {37}, year = {2003}, pages = {681-698}, doi = {10.1051/m2an:2003054}, mrnumber = {2018437}, zbl = {1070.74030}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2003__37_4_681_0} }
Caillerie, Denis; Mourad, Ayman; Raoult, Annie. Cell-to-muscle homogenization. Application to a constitutive law for the myocardium. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 37 (2003) pp. 681-698. doi : 10.1051/m2an:2003054. http://gdmltest.u-ga.fr/item/M2AN_2003__37_4_681_0/
[1] A model of the mechanics of the left ventricle. Ann. Biomed. Engrg. 7 (1979) 299-318.
, and ,[2] Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam (1978). | MR 503330 | Zbl 0404.35001
, and ,[3] Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics 15. Springer-Verlag, New York (1991). | MR 1115205 | Zbl 0788.73002
and ,[4] Three models of non periodic fibrous materials obtained by homogenization. ESAIM: M2AN 27 (1993) 759-775. | Numdam | Zbl 0795.92006
,[5] Loi de comportement en grandes déformations du muscle à fibres actives. Application à la mécanique du cœur humain et à sa croissance. Thèse de l'Université de Savoie (1998).
,[6] Les techniques de changement d'échelles dans les milieux granulaires, in Micromécanique des milieux granulaires. Hermès Sciences, Paris (2001).
and ,[7] Mechanics of the left ventricle. Biophys. J. 112 (1982) 333-339.
,[8] A Physiologically-Based Model for the Active Cardiac Muscle Contraction, in Functional Imaging and Modeling of the Heart, Katila, Magnin, Clarysse, Montagnat and Nenonen Eds., LNCS 2230. Springer (2001) 128-133. | Zbl 1052.68824
, , , , and ,[9] Mathematical Elasticity. Vol. 1: Three-Dimensional Elasticity. North-Holland, Amsterdam (1987). | MR 936420 | Zbl 0648.73014
,[10] Homogenization of Reticulated Structures, Applied Mathematical Science 136. Springer-Verlag, New York (1999). | MR 1676922 | Zbl 0929.35002
and ,[11] Biomechanics: Mechanical Properties of Living Tissues. 2nd ed., Springer-Verlag, New York (1993). | Zbl 0743.92007
,[12] An Introduction to Continuum Mechanics. Academic Press, San Diego (1981). | MR 636255 | Zbl 0559.73001
,[13] Three-dimensional cartography of the pattern of the myofibres in the second trimester fetal human heart. Anat. Embryol. 202 (2000) 103-118.
, , and ,[14] Determination of a constitutive relation for passive myocardium: I. A new functional form. J. Biomech. Engrg. 112 (1990) 333-339.
, and ,[15] Determination of a constitutive relation for passive myocardium: II. Parameter estimation. J. Biomech. Engrg. 112 (1990) 340-346.
, and ,[16] A multiaxial constitutive law for mammalian left ventricular myocardium in steady-state barium contracture or tetanus. J. Biomech. Engrg. 120 (1998) 504-517.
and ,[17] Continuum modeling of lattice structures in large displacement. Applications to buckling analysis. Comput. & Structures 68 (1998) 181-189. | Zbl 0940.74034
and ,[18] Geometrical modelling of the fibre organization in the human left ventricle, in Functional Imaging and Modeling of the Heart, Katila, Magnin, Clarysse, Montagnat, Nenonen Eds., LNCS 2230. Springer (2001) 32-38. | Zbl 1052.68917
, , , , , and ,[19] Computational mechanics of the heart. J. Elasticity 61 (2000) 113-141. | Zbl 1071.74659
and ,[20] Fiber architecture of the left ventricular wall: An asymptotic analysis. Comm. Pure Appl. Math. XLII (1989) 79-113. | Zbl 0664.92005
,[21] Homogénéisation des milieux continus et discrets périodiques orientés. Thèse de l'École Nationale des Ponts et Chaussées (1998).
,[22] Non Homogeneous Media and Vibration Theory, Monographs in Physics 127. Springer-Verlag, Berlin (1980). | MR 578345 | Zbl 0432.70002
,[23] Gross morphology and fiber geometry of the heart, in Handbook of Physiology. The cardiovascular system, R.M. Berne, N. Sperelakis and S.R. Geiger Eds., Am. Phys. Soc. Williams & Wilkins, Baltimore (1979).
,[24] Modeling heart development. J. Elasticity 61 (2000) 165-197. | Zbl 0987.74049
and ,[25] Continuous modeling of lattice structures by homogenization. Adv. Engrg. Software 29 (1998) 699-705.
and ,[26] A First Course in Rational Continuum Mechanics. Academic Press, New York (1977). | MR 559731 | Zbl 0866.73001
,[27] Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle. J. Elasticity 61 (2000) 143-165. | Zbl 0974.92002
, and ,[28] Variational Methods in Elasticity and Plasticity. 2nd ed., Pergamon Press (1975). | MR 391680 | Zbl 0339.73035
,[29] Quantification of the mechanical properties of noncontracting canine myocardium under simultaneous biaxial loading. J. Biomech. 20 (1987) 577-589.
, , and ,[30] IV abd V. Gharpuray, Gel stretch method: a new method to measure constitutive properties of cardiac muscle cells. Am. J. Physiol. 274 (1998) H2188-2202.
, , , , , ,