In this paper we propose a finite element method for the approximation of second order elliptic problems on composite grids. The method is based on continuous piecewise polynomial approximation on each grid and weak enforcement of the proper continuity at an artificial interface defined by edges (or faces) of one the grids. We prove optimal order a priori and energy type a posteriori error estimates in 2 and 3 space dimensions, and present some numerical examples.
@article{M2AN_2003__37_3_495_0, author = {Hansbo, Anita and Hansbo, Peter and Larson, Mats G.}, title = {A finite element method on composite grids based on Nitsche's method}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {37}, year = {2003}, pages = {495-514}, doi = {10.1051/m2an:2003039}, zbl = {1031.65128}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2003__37_3_495_0} }
Hansbo, Anita; Hansbo, Peter; Larson, Mats G. A finite element method on composite grids based on Nitsche's method. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 37 (2003) pp. 495-514. doi : 10.1051/m2an:2003039. http://gdmltest.u-ga.fr/item/M2AN_2003__37_3_495_0/
[1] The mortar element method with overlapping subdomains. SIAM J. Numer. Anal. 40 (2002) 601-628. | Zbl 1020.65086
and ,[2] A finite element method for domain decomposition with non-matching grids. ESAIM: M2AN 37 (2003) 209-225. | Numdam | Zbl 1047.65099
, and ,[3] On conservation at grid interfaces. SIAM J. Numer. Anal. 24 (1987) 967-984. | Zbl 0633.65086
,[4] The Mathematical Theory of Finite Element Methods. Springer-Verlag, Berlin (1994). | MR 1278258 | Zbl 0804.65101
and ,[5] Analysis of a Chimera method. C. R. Acad. Sci. Paris Sér. I Math. 332 (2001) 655-660. | Zbl 0988.65117
, and ,[6] Overlapping nonmatching grid mortar element methods for elliptic problems. SIAM J. Numer. Anal. 36 (1999) 581-606. | Zbl 0927.65131
, and ,[7] Composite overlapping meshes for the solution of partial-differential equations. J. Comput. Phys. 90 (1990) 1-64. | Zbl 0709.65090
and ,[8] Finite Element Approximation of the Navier-Stokes Equations. Springer-Verlag, Berlin (1979). | MR 548867 | Zbl 0413.65081
and ,[9] An unfitted finite element method, based on Nitsche's method, for elliptic interface problems. Comput. Methods Appl. Mech. Engrg. 191 (2002) 5537-5552. | Zbl 1035.65125
and ,[10] Almost optimal interior penalty discontinuous approximations of symmetric elliptic problems on non-matching grids. Technical Report, ISC-01-05-MATH (2001). | Zbl 1095.65103
, , and ,[11] Interior penalty discontinuous approximations of elliptic problems. Comput. Meth. Appl. Math. 1 (2001) 367-382. | Zbl 0995.65114
, and ,[12] Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36 (1971) 9-15. | Zbl 0229.65079
,[13] Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 190 (1990) 483-493. | Zbl 0696.65007
and ,[14] Mortaring by a method of J.A. Nitsche, in Computational Mechanics: New Trends and Applications, S. Idelsohn, E. Onate and E. Dvorkin Eds., CIMNE, Barcelona (1998). | MR 1839048
,