We study in this paper some numerical schemes for hyperbolic systems with unilateral constraint. In particular, we deal with the scalar case, the isentropic gas dynamics system and the full-gas dynamics system. We prove the convergence of the scheme to an entropy solution of the isentropic gas dynamics with unilateral constraint on the density and mass loss. We also study the non-trivial steady states of the system.
@article{M2AN_2003__37_3_479_0, author = {Berthelin, Florent}, title = {Numerical flux-splitting for a class of hyperbolic systems with unilateral constraint}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {37}, year = {2003}, pages = {479-494}, doi = {10.1051/m2an:2003038}, mrnumber = {1994313}, zbl = {1028.35101}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2003__37_3_479_0} }
Berthelin, Florent. Numerical flux-splitting for a class of hyperbolic systems with unilateral constraint. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 37 (2003) pp. 479-494. doi : 10.1051/m2an:2003038. http://gdmltest.u-ga.fr/item/M2AN_2003__37_3_479_0/
[1] Existence and weak stability for a two-phase model with unilateral constraint. Math. Models Methods Appl. Sci. 12 (2002) 249-272. | Zbl 1027.35079
,[2] Solution with finite energy to a BGK system relaxing to isentropic gas dynamics. Ann. Fac. Sci. Toulouse Math. 9 (2000) 605-630. | Numdam | Zbl 1006.82023
and ,[3] Kinetic invariant domains and relaxation limit from a BGK model to isentropic gas dynamics. Asymptot. Anal. 31 (2002) 153-176. | Zbl 1032.76064
and ,[4] Weak solutions for a hyperbolic system with unilateral constraint and mass loss. Ann. Inst. H. Poincaré Anal. Non Linéaire (to appear). | Numdam | MR 2008686 | Zbl 1079.76063
and ,[5] Equilibrium schemes for scalar conservation laws with stiff sources. Rapport INRIA RR-3891. | Zbl 1017.65070
, and ,[6] Construction of BGK models with a family of kinetic entropies for a given system of conservation laws. J. Statist. Phys. 95 (1999) 113-170. | Zbl 0957.82028
,[7] Entropy satisfying flux vector splittings and kinetic BGK models. Numer. Math. (to appear). | MR 1990588 | Zbl 1029.65092
,[8] Entropy flux-splittings for hyperbolic conservation laws I, General framework. Comm. Pure Appl. Math. 48 (1995) 691-729. | Zbl 0833.35088
and ,[9] Entropies and flux-splittings for the isentropic Euler equations. Chinese Ann. Math. Ser. B 22 (2001) 145-158. | Zbl 0980.35096
and ,[10] Equality or convex inequality constraints and hyperbolic systems of conservation laws with entropy. Preprint (2001).
,[11] Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics. Comm. Math. Phys. 177 (1996) 349-380. | Zbl 0852.35097
, and ,[12] Hyperbolic systems of conservation laws. Mathématiques & Applications 3/4, Ellipses, Paris (1991). | MR 1304494 | Zbl 0768.35059
and ,[13] A well-balanced scheme designed for inhomogeneous scalar conservation laws. C. R. Acad. Sci. Paris Sér. I Math. 323 (1996) 543-546. | Zbl 0858.65091
and ,[14] A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33 (1996) 1-16. | Zbl 0876.65064
and ,[15] A steady-state capturing method for hyperbolic systems with geometrical source term. ESAIM: M2AN 35 (2001) 631-645. | Numdam | Zbl 1001.35083
,[16] First order quasilinear equations in several independant variables. Mat. Sb. 81 (1970) 285-255; Mat. Sb 10 (1970) 217-243. | Zbl 0215.16203
,[17] Convergence of a relaxation scheme for hyperbolic systems of conservation laws. Numer. Math. 88 (2001) 121-134. | Zbl 0983.35086
and ,[18] Obstacle problems for scalar conservation laws. ESAIM: M2AN 35 (2001) 575-593. | Numdam | Zbl 0990.35096
,[19] Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates. Comm. Pure Appl. Math. 49 (1996) 599-638. | Zbl 0853.76077
, and ,[20] Inéquations variationnelles et quasivariationnelles hyperboliques du premier ordre. J. Math. Pures Appl. 55 (1976) 353-378. | Zbl 0359.35050
and ,