In this paper, we consider a 2D mathematical modelling of the vertical compaction effect in a water saturated sedimentary basin. This model is described by the usual conservation laws, Darcy's law, the porosity as a function of the vertical component of the effective stress and the Kozeny-Carman tensor, taking into account fracturation effects. This model leads to study the time discretization of a nonlinear system of partial differential equations. The existence is obtained by a fixed-point argument. The uniqueness proof, by Holmgren's method, leads to work out a linear, strongly coupled, system of partial differential equations and boundary conditions.
@article{M2AN_2003__37_2_373_0, author = {Gagneux, G\'erard and Masson, Roland and Plouvier-Debaigt, Anne and Vallet, Guy and Wolf, Sylvie}, title = {Vertical compaction in a faulted sedimentary basin}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {37}, year = {2003}, pages = {373-388}, doi = {10.1051/m2an:2003032}, mrnumber = {1991207}, zbl = {1048.35080}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2003__37_2_373_0} }
Gagneux, Gérard; Masson, Roland; Plouvier-Debaigt, Anne; Vallet, Guy; Wolf, Sylvie. Vertical compaction in a faulted sedimentary basin. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 37 (2003) pp. 373-388. doi : 10.1051/m2an:2003032. http://gdmltest.u-ga.fr/item/M2AN_2003__37_2_373_0/
[1] Uniqueness generalizated solutions of degenerate problem in two-phase filtration. Numerical methods mechanics in continuum medium. Collection Sciences Research, Sbornik, t. 15, No. 6 (1984) 15-28 (in Russian). | Zbl 0585.76143
and ,[2] Adaptive mesh finite element method for the sedimentary basin problem. In honour of Academician Nicolae Dan Cristescu on his 70th birthday, Rev. Roumaine Math. Pures Appl. 45 (2000), No. 2 (2001) 171-181. | Zbl 1020.76031
,[3] Problèmes aux limites pour les équations aux dérivées partielles partielles du premier ordre à coefficients réels. Ann. Sci. École Norm. Sup. 3 (1970) 185-233. | Numdam | Zbl 0202.36903
,[4] Asymptotic analysis for periodic structures. North-holland, Amsterdam (1978). | MR 503330 | Zbl 0404.35001
, and ,[5]
, http://www.ggl.ulaval.ca/personnel/bourque/intro.pt/science.terre.html.[6] Analyse fonctionnelle - Théorie et applications. Masson, Paris (1983). | MR 697382 | Zbl 0511.46001
,[7] Handbook of Numerical Analysis. Vol. II, Finite Element Methods (Part 1). North Holland (1991). | MR 1115235
and ,[8] Fast and slow compaction in sedimentary basins. SIAM J. Appl. Math. 59 (1999) 365-385. | Zbl 0923.35124
and ,[9] Sur l'analyse de modèles de la filtration diphasique en milieu poreux, in Équations aux dérivées partielles et applications : Articles dédiés à J.L. Lions. Gauthier-Villars, Elsevier (1998) 527-540. | Zbl 0914.35067
,[10] Analyse mathématique de modèles non linéaires de l'ingénierie pétrolière, Mathématiques & Applications No. 22. Springer-Verlag (1996). | Zbl 0842.35126
and ,[11] Modélisation et analyse mathématique d'un écoulement 2D monophasique dans un bassin sédimentaire faillé sous l'effet de la compaction verticale, Publication Interne du Laboratoire de Mathématiques Appliquées CNRS-ERS 2055, No. 2000-31 (2000).
, and ,[12] Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin (1977). | MR 473443 | Zbl 0361.35003
and ,[13] Induced anisotropy in large ice shields: theory and its homogenization. Contin. Mech. Thermodyn. 10 (1998) 293-318. | Zbl 0934.74018
and ,[14] Implementation of a three-dimensional hydrodynamic model for evolution of sedimentary basins. Comput. Math. Math. Phys. 38 (1998) 1138-1151. | Zbl 0960.86001
, , and ,[15]
, http://www.emse.fr/environnement/fiches/1_2_2.html.[16] Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969). | MR 259693 | Zbl 0189.40603
,[17] Elastoplastic deformation of porous media applied to the modelling of compaction at basin scale. Marine and Petroleum Geology 15 (1998) 145-162.
, , , and ,[18] An Lp-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Sci. Norm. Sup. Pisa Cl. Sci. 17 (1963) 189-206. | Numdam | Zbl 0127.31904
,[19] Écoulements de fluide, Compacité par entropie, Collection Recherche et Mathématiques Appliquées, No. 10. Masson (1989). | MR 1269784 | Zbl 0717.76002
,[20] Contribution à l'étude de l'unicité pour des systèmes d'équations de conservation. Cas des écoulements diphasiques incompressibles en milieu poreux, Thèse de l'Université de Pau (1996).
,[21] Uniqueness and stability of the generalized solution of the Cauchy problem for a quasi-linear equation. Uspekhi Mat. Nauk 14 (1959) 165-170. | Zbl 0132.33303
,[22] Modélisation de la compaction dans les bassins sédimentaires : Influence d'un comportement mécanique tensoriel, Thèse de l'ENSAM (1998).
,[23] Quantitative HC potential evaluation using 3D basin modelling application to Franklin structure, central Graben, North Sea. UK Marine and Petroleum Geology 17 (2000) 841-856.
and ,[24] A 3D basin model for hydrocarbon potential evaluation: Application to Congo offshore. Oil and Gas Science and Technology 55 (2000) 3-12.
, , and ,[25] A solid-fluid mixture model allowing for solid dilatation under external pressure. Contin. Mech. Thermodyn. 13 (2001) 287-306. | Zbl 1134.74365
, and ,[26] Two-phase oil migration in compacting sedimentary basins modelled by the finite element method. Int. J. Numer. Anal. Methods Geomech. 21 (1997) 91-120. | Zbl 0904.76087
,[27] A model for compaction of sedimentary basins. Appl. Math. Modelling 14 (1990) 506-517. | Zbl 0709.76140
, , and ,[28] Some properties of functions in and their applications to the uniqueness of solutions for degenerate quasilinear parabolic equations. Northeast. Math. J. 5 (1989) 395-422. | Zbl 0726.35071
and ,[29] Domain decomposition methods applied to sedimentary basin modeling. Math. Comput. Modelling 30 (1999) 153-178. | Zbl 1042.65543
and ,