Finite element methods on non-conforming grids by penalizing the matching constraint
Boillat, Eric
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 37 (2003), p. 357-372 / Harvested from Numdam

The present paper deals with a finite element approximation of partial differential equations when the domain is decomposed into sub-domains which are meshed independently. The method we obtain is never conforming because the continuity constraints on the boundary of the sub-domains are not imposed strongly but only penalized. We derive a selection rule for the penalty parameter which ensures a quasi-optimal convergence.

Publié le : 2003-01-01
DOI : https://doi.org/10.1051/m2an:2003031
Classification:  65N12,  65N30,  65F10
@article{M2AN_2003__37_2_357_0,
     author = {Boillat, Eric},
     title = {Finite element methods on non-conforming grids by penalizing the matching constraint},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {37},
     year = {2003},
     pages = {357-372},
     doi = {10.1051/m2an:2003031},
     mrnumber = {1991206},
     zbl = {1043.65124},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2003__37_2_357_0}
}
Boillat, Eric. Finite element methods on non-conforming grids by penalizing the matching constraint. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 37 (2003) pp. 357-372. doi : 10.1051/m2an:2003031. http://gdmltest.u-ga.fr/item/M2AN_2003__37_2_357_0/

[1] R.A. Adams, Sobolev Spaces. Academic Press, New-York, San Francisco, London (1975). | MR 450957 | Zbl 0314.46030

[2] F. Ben Belgacem, The mortar finite element method with Lagrange multipliers. Numer. Math. 84 (1999) 173-197. | Zbl 0944.65114

[3] F. Ben Belgacem and Y. Maday, The mortar element method for three dimensional finite elements. RAIRO Modél. Math. Anal. Numér. 31 (1997) 289-302. | Numdam | Zbl 0868.65082

[4] M. Bercovier, Perturbation of mixed variational problems. Application to mixed finite element methods. RAIRO Anal. Numér. 12 (1978) 211-236. | Numdam | Zbl 0428.65059

[5] F. Brezzi and M. Fortin, Mixed and Hybride Finite Element Methods. Springer-Verlag, New York (1991). | MR 1115205 | Zbl 0788.73002

[6] P.G. Ciarlet, The Finite Element Method for Elliptic Problem. North Holland, Amsterdam (1978). | MR 520174 | Zbl 0383.65058

[7] P. Clement, Approximation by finite element using local regularization. RAIRO Ser. Rouge 8 (1975) 77-84. | Numdam | Zbl 0368.65008

[8] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985). | MR 775683 | Zbl 0695.35060

[9] J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 1, Dunod, Paris (1968). | MR 247243 | Zbl 0165.10801

[10] Y. Maday, C. Bernardi and A.T. Patera, A new nonconforming approach to domain decomposition: the mortar element method, in Nonlinear Partial Differential Equations and their applications, H. Brezis and J.L. Lions Eds., Vol. XI, Pitman (1994) 13-51. | Zbl 0797.65094

[11] J. Nitsche, Über eine Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36 (1970/1971) 9-15. | Zbl 0229.65079

[12] D. Schotzau, C. Schwab and R. Stenberg, Mixed hp-fem on anisotropic meshes ii. Hanging nodes and tensor products of boundary layer meshes. Numer. Math. 83 (1999) 667-697. | Zbl 0958.76049

[13] R. Stenberg, On some techniques for approximating boundary conditions in the finite element method. J. Comput. Appl. Math. 63 (1995) 139-148. | Zbl 0856.65130