In this paper we show how abstract physical requirements are enough to characterize the classical collision kernels appearing in kinetic equations. In particular Boltzmann and Landau kernels are derived.
@article{M2AN_2003__37_2_345_0, author = {Desvillettes, Laurent and Salvarani, Francesco}, title = {Characterization of collision kernels}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {37}, year = {2003}, pages = {345-355}, doi = {10.1051/m2an:2003030}, mrnumber = {1991205}, zbl = {1047.76114}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2003__37_2_345_0} }
Desvillettes, Laurent; Salvarani, Francesco. Characterization of collision kernels. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 37 (2003) pp. 345-355. doi : 10.1051/m2an:2003030. http://gdmltest.u-ga.fr/item/M2AN_2003__37_2_345_0/
[1] Entropy dissipation and long-range interactions. Arch. Ration. Mech. Anal. 152 (2000) 327-355. | Zbl 0968.76076
, , and ,[2] On the Landau approximation in plasma physics. To appear in Ann. I.H.P. An. non linéaire. | Numdam | MR 2037247 | Zbl 1044.83007
and ,[3] The Boltzmann equation and the group transformations. Math. Models Methods Appl. Sci. 3 (1993) 443-476. | Zbl 0782.35078
,[4] The mathematical theory of dilute gases. Springer Verlag, New York (1994). | MR 1307620 | Zbl 0813.76001
, and ,[5] Boltzmann's kernel and the spatially homogeneous Boltzmann equation. Riv. Mat. Univ. Parma 6 (2001) 1-22. | Zbl 1078.76059
,[6] A rigorous derivation of a linear kinetic equation of Fokker-Planck type in the limit of grazing collisions. J. Statist. Phys. 104 (2001) 1173-1189. | Zbl 1051.82022
and ,[7] On the spatially homogeneous Landau equation for hard potentials. Part I: Existence, uniqueness and smoothness. Comm. Partial Differential Equations 25 (2000) 179-259. | Zbl 0946.35109
and ,[8] Asymptotic motion of a classical particle in a random potential in two dimensions: Landau model. Comm. Math. Phys. 113 (1987) 209-230. | Zbl 0642.60057
, and ,[9] Rigorous theory of the Boltzmann equation in the Lorentz gas. Nota interna No. 358, Istituto di Fisica, Università di Roma (1973).
,[10] Les distributions, Tome IV, Applications de l'analyse harmonique. Dunod, Paris (1967). | Zbl 0219.46032
and ,[11] The analysis of linear partial differential operators I. Springer Verlag, Berlin (1983). | Zbl 0521.35001
,[12] Global validity of the Boltzmann equation for a two-dimensional rare gas in the vacuum. Comm. Math. Phys. 105 (1986) 189-203. | Zbl 0609.76083
and ,[13] Global validity of the Boltzmann equation for two- and three-dimensional rare gas in the vacuum: erratum and improved result. Comm. Math. Phys. 121 (1989) 143-146. | Zbl 0850.76600
and ,[14] Time evolution of large classical systems. Springer Verlag, Lecture Notes in Phys. 38 (1975) 1-111. | Zbl 0329.70011
,[15] A mathematical foundation for radiative transfer. J. Math. Mech. 6 (1957) 685-730. | Zbl 0078.42503
,