We introduce a finite volume scheme for multi-dimensional drift-diffusion equations. Such equations arise from the theory of semiconductors and are composed of two continuity equations coupled with a Poisson equation. In the case that the continuity equations are non degenerate, we prove the convergence of the scheme and then the existence of solutions to the problem. The key point of the proof relies on the construction of an approximate gradient of the electric potential which allows us to deal with coupled terms in the continuity equations. Finally, a numerical example is given to show the efficiency of the scheme.
@article{M2AN_2003__37_2_319_0, author = {Chainais-Hillairet, Claire and Liu, Jian-Guo and Peng, Yue-Jun}, title = {Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {37}, year = {2003}, pages = {319-338}, doi = {10.1051/m2an:2003028}, mrnumber = {1991203}, zbl = {1032.82038}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2003__37_2_319_0} }
Chainais-Hillairet, Claire; Liu, Jian-Guo; Peng, Yue-Jun. Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 37 (2003) pp. 319-338. doi : 10.1051/m2an:2003028. http://gdmltest.u-ga.fr/item/M2AN_2003__37_2_319_0/
[0] Numerical approximation of the -D nonlinear drift-diffusion model in semiconductors, in Nonlinear kinetic theory and mathematical aspects of hyperbolic systems, Rapallo, (1992) 1-10. World Sci. Publishing, River Edge, NJ (1992).
, and ,[0] On the semiconductor drift diffusion equations. Differential Integral Equations 9 (1996) 729-744. | Zbl 0859.35055
,[0] Analyse Fonctionnelle - Théorie et Applications. Masson, Paris (1983). | Zbl 0511.46001
,[0] Méthodes d'éléments finis mixtes et schéma de Scharfetter-Gummel. C. R. Acad. Sci. Paris Sér. I Math. 305 (1987) 599-604. | Zbl 0623.65131
, and ,[0] Two-dimensional exponential fitting and applications to drift-diffusion models. SIAM J. Numer. Anal. 26 (1989) 1342-1355. | Zbl 0686.65088
, and ,[0] Convergence of a finite volume scheme for the drift-diffusion equations in 1-D. IMA J. Numer. Anal. 23 (2003) 81-108. | Zbl 1018.65109
and ,[0] A finite volume scheme to the drift-diffusion equations for semiconductors, in Proc. of The Third International Symposium on Finite Volumes for Complex Applications, R. Herbin and D. Kröner Eds., Hermes, Porquerolles, France (2002) 163-170. | Zbl 1072.82574
and ,[0] Finite volume approximation for degenerate drift-diffusion system in several space dimensions. Math. Models Methods. Appl. Sci. (submitted). | MR 2047580 | Zbl 1127.65319
and ,[0] The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). | MR 520174 | Zbl 0383.65058
,[0] Finite Volume Methods. North-Holland, Amsterdam, Handb. Numer. Anal. VII (2000) 713-1020. | Zbl 0981.65095
, and ,[0] Convergence of a finite volume scheme for nonlinear degenerate parabolic equations. Numer. Math. 92 (2002) 41-82. | Zbl 1005.65099
, , and ,[0] Global solutions of the time-dependent drift-diffusion semiconductor equations. J. Differential Equations 123 (1995) 523-566. | Zbl 0845.35050
and ,[0] On the uniqueness of solutions to the drift-diffusion model of semiconductor devices. Math. Models Methods Appl. Sci. 4 (1994) 121-133. | Zbl 0801.35133
,[0] Numerical approximation of a drift-diffusion model for semiconductors with nonlinear diffusion. ZAMM Z. Angew. Math. Mech. 75 (1995) 783-799. | Zbl 0866.35056
,[0] A nonlinear drift-diffusion system with electric convection arising in semiconductor and electrophoretic modeling. Math. Nachr. 185 (1997) 85-110. | Zbl pre01019611
,[0] A hierarchy of hydrodynamic models for plasmas: zero-relaxation-time limits. Comm. Partial Differential Equations 24 (1999) 1007-1033. | Zbl 0946.35074
and ,[0] Zero-relaxation-time limits in the hydrodynamic equations for plasmas revisited. Z. Angew. Math. Phys. 51 (2000) 385-396. | Zbl 0963.35115
and ,[0] A discretization scheme for a quasi-hydrodynamic semiconductor model. Math. Models Methods Appl. Sci. 7 (1997) 935-955. | Zbl 0907.35075
and ,[0] Semiconductor Equations. Springer-Verlag, Vienna (1990). | MR 1063852 | Zbl 0765.35001
, and ,